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Abstract

Deep convolutional neutral networks have achieved

great success on image recognition tasks. Yet, it is non-

trivial to transfer the state-of-the-art image recognition net-

works to videos as per-frame evaluation is too slow and un-

affordable. We present deep feature flow, a fast and accu-

rate framework for video recognition. It runs the expensive

convolutional sub-network only on sparse key frames and

propagates their deep feature maps to other frames via a

flow field. It achieves significant speedup as flow computa-

tion is relatively fast. The end-to-end training of the whole

architecture significantly boosts the recognition accuracy.

Deep feature flow is flexible and general. It is validated on

two video datasets on object detection and semantic seg-

mentation. It significantly advances the practice of video

recognition tasks. Code would be released.

1. Introduction

Recent years have witnessed significant success of deep

convolutional neutral networks (CNNs) for image recogni-

tion, e.g., image classification [23, 39, 41, 16], semantic

segmentation [28, 4, 50], and object detection [13, 14, 12,

34, 8, 27]. With their success, the recognition tasks have

been extended from image domain to video domain, such

as semantic segmentation on Cityscapes dataset [6], and ob-

ject detection on ImageNet VID dataset [36]. Fast and ac-

curate video recognition is crucial for high-value scenarios,

e.g., autonomous driving and video surveillance. Neverthe-

less, applying existing image recognition networks on indi-

vidual video frames introduces unaffordable computational

cost for most applications.

It is widely recognized that image content varies slowly

over video frames, especially the high level semantics [45,

51, 21]. This observation has been used as means of reg-

ularization in feature learning, considering videos as unsu-

pervised data sources [45, 21]. Yet, such data redundancy
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and continuity can also be exploited to reduce the computa-

tion cost. This aspect, however, has received little attention

for video recognition using CNNs in the literature.

Modern CNN architectures [39, 41, 16] share a com-

mon structure. Most layers are convolutional and account

for the most computation. The intermediate convolutional

feature maps have the same spatial extent of the input im-

age (usually at a smaller resolution, e.g., 16× smaller).

They preserve the spatial correspondences between the low

level image content and middle-to-high level semantic con-

cepts [47]. Such correspondence provides opportunities to

cheaply propagate the features between nearby frames by

spatial warping, similar to optical flow [17].

In this work, we present deep feature flow, a fast and

accurate approach for video recognition. It applies an image

recognition network on sparse key frames. It propagates

the deep feature maps from key frames to other frames via

a flow field. As exemplifed in Figure 1, two intermediate

feature maps are responsive to “car” and “person” concepts.

They are similar on two nearby frames. After propagation,

the propagated features are similar to the original features.

Typically, the flow estimation and feature propagation

are much faster than the computation of convolutional fea-

tures. Thus, the computational bottleneck is avoided and

significant speedup is achieved. When the flow field is also

estimated by a network, the entire architecture is trained

end-to-end, with both image recognition and flow networks

optimized for the recognition task. The recognition accu-

racy is significantly boosted.

In sum, deep feature flow is a fast, accurate, general,

and end-to-end framework for video recognition. It can

adopt most state-of-the-art image recognition networks in

the video domain. Up to our knowledge, it is the first work

to jointly train flow and video recognition tasks in a deep

learning framework. Extensive experiments verify its effec-

tiveness on video object detection and semantic segmenta-

tion tasks, on recent large-scale video datasets. Compared

to per-frame evaluation, our approach achieves unprece-

dented speed (up to 10× faster, real time frame rate) with

moderate accuracy loss (a few percent). The high perfor-

mance facilitates video recognition tasks in practice. Code
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Figure 1. Motivation of proposed deep feature flow approach. Here we visualize the two filters’ feature maps on the last convolutional layer

of our ResNet-101 model (see Sec. 4 for details). The convolutional feature maps are similar on two nearby frames. They can be cheaply

propagated from the key frame to current frame via a flow field.

would be released.

2. Related Work

To our best knowledge, our work is unique and there is

no previous similar work to directly compare with. Never-

theless, it is related to previous works in several aspects, as

discussed below.

Image Recognition Deep learning has been success-

ful on image recognition tasks. The network architectures

have evolved and become powerful on image classifica-

tion [23, 39, 41, 15, 20, 16]. For object detection, the

region-based methods [13, 14, 12, 34, 8] have become the

dominant paradigm. For semantic segmentation, fully con-

volutional networks (FCNs) [28, 4, 50] have dominated the

field. However, it is computationally unaffordable to di-

rectly apply such image recognition networks on all the

frames for video recognition. Our work provides an effec-

tive and efficient solution.

Network Acceleration Various approaches have been

proposed to reduce the computation of networks. To name

a few, in [48, 12] matrix factorization is applied to de-

compose large network layers into multiple small layers.

In [7, 33, 18], network weights are quantized. These tech-

niques work on single images. They are generic and com-

plementary to our approach.

Optical Flow It is a fundamental task in video anal-

ysis. The topic has been studied for decades and domi-

nated by variational approaches [17, 2], which mainly ad-

dress small displacements [43]. The recent focus is on large

displacements [3], and combinatorial matching (e.g., Deep-

Flow [44], EpicFlow [35]) has been integrated into the vari-

ational approach. These approaches are all hand-crafted.

Deep learning and semantic information have been ex-

ploited for optical flow recently. FlowNet [9] firstly applies

deep CNNs to directly estimate the motion and achieves

good result. The network architecture is simplified in the re-

cent Pyramid Network [32]. Other works attempt to exploit

semantic segmentation information to help optical flow es-

timation [37, 1, 19], e.g., providing specific constraints on

the flow according to the category of the regions.

Optical flow information has been exploited to help vi-

sion tasks, such as pose estimation [31]. This work exploits

optical flow to speed up general video recognition tasks.

Exploiting Temporal Information in Video Recogni-

tion T-CNN [22] incorporates temporal and contextual in-

formation from tubelets in videos. The dense 3D CRF [24]

proposes long-range spatial-temporal regularization in se-

mantic video segmentation. STFCN [10] considers a

spatial-temporal FCN for semantic video segmentation.

These works operate on volume data, show improved recog-

nition accuracy but greatly increase the computational cost.
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By contrast, our approach seeks to reduce the computation

by exploiting temporal coherence in the videos. The net-

work still runs on single frames and is fast.

Slow Feature Analysis High level semantic concepts

usually evolve slower than the low level image appear-

ance in videos. The deep features are thus expected to

vary smoothly on consecutive video frames. This obser-

vation has been used to regularize the feature learning in

videos [45, 21, 51, 49, 40]. We conjecture that our approach

may also benefit from this fact.

Clockwork Convnets [38] It is the most related work

to ours as it also disables certain layers in the network on

certain video frames and reuses the previous features. It is,

however, much simpler and less effective than our approach.

About speed up, Clockwork only saves the computation

of some layers (e.g., 1/3 or 2/3) in some frames (e.g., every

other frame). As seen later, our method saves that on most

layers (task network has only 1 layer) in most frames (e.g.,

9 out of 10 frames). Thus, our speedup ratio is much higher.

About accuracy, Clockwork does not exploit the corre-

spondence between frames and simply copies features. It

only reschedules the computation of inference in an off-

the-shelf network and does not perform fine-tuning or re-

training. Its accuracy drop is pretty noticeable at even small

speed up. In Table 4 and 6 of their arxiv paper, at 77% full

runtime (thus 1.3 times faster), Mean IU drops from 31.1 to

26.4 on NYUD, from 70.0 to 64.0 on Youtube, from 65.9

to 63.3 on Pascal, and from 65.9 to 64.4 on Cityscapes. By

contrast, we re-train a two-frame network with motion con-

sidered end-to-end. The accuracy drop is small, e.g., from

71.1 to 70.0 on Cityscape while being 3 times faster (Fig-

ure 3, bottom).

About generality, Clockwork is only applicable for se-

mantic segmentation with FCN. Our approach transfers

general image recognition networks to the video domain.

3. Deep Feature Flow

Table 1 summarizes the notations used in this paper. Our

approach is briefly illustrated in Figure 2.

Deep Feature Flow Inference Given an image recogni-

tion task and a feed-forward convolutional neutral network

N that outputs result for input image I as y = N (I). Our

goal is to apply the network to all video frames Ii, i =
0, ...,∞, fast and accurately.

Following the modern CNN architectures [39, 41, 16]

and applications [28, 4, 50, 13, 14, 12, 34, 8], without loss

of generality, we decompose N into two consecutive sub-

networks. The first sub-network Nfeat, dubbed feature net-

work, is fully convolutional and outputs a number of in-

termediate feature maps, f = Nfeat(I). The second sub-

network Ntask, dubbed task network, has specific structures

for the task and performs the recognition task over the fea-

ture maps, y = Ntask(f).

k key frame index

i current frame index

r per-frame computation cost ratio, Eq. (5)

l key frame duration length

s overall speedup ratio, Eq. (7)

Ii, Ik video frames

yi,yk recognition results

fk convolutional feature maps on key frame

fi propagated feature maps on current frame

Mi→k 2D flow field

p, q 2D location

Si→k scale field

N image recognition network

Nfeat sub-network for feature extraction

Ntask sub-network for recognition result

F flow estimation function

W feature propagation function, Eq. (3)

Table 1. Notations.

Consecutive video frames are highly similar. The simi-

larity is even stronger in the deep feature maps, which en-

code high level semantic concepts [45, 21]. We exploit the

similarity to reduce computational cost. Specifically, the

feature network Nfeat only runs on sparse key frames. The

feature maps of a non-key frame Ii are propagated from its

preceding key frame Ik.

The features in the deep convolutional layers encode the

semantic concepts and correspond to spatial locations in the

image [47]. Examples are illustrated in Figure 1. Such spa-

tial correspondence allows us to cheaply propagate the fea-

ture maps by the manner of spatial warping.

Let Mi→k be a two dimensional flow field. It is ob-

tained by a flow estimation algorithm F such as [26, 9],

Mi→k = F(Ik, Ii). It is bi-linearly resized to the same

spatial resolution of the feature maps for propagation. It

projects back a location p in current frame i to the location

p+ δp in key frame k, where δp = Mi→k(p).

As the values δp are in general fractional, the feature

warping is implemented via bilinear interpolation

f ci (p) =
∑

q

G(q,p+ δp)f ck(q), (1)

where c identifies a channel in the feature maps f , q enu-

merates all spatial locations in the feature maps, and G(·, ·)
denotes the bilinear interpolation kernel. Note that G is two

dimensional and is separated into two one dimensional ker-

nels as

2351

painterdrown Zheng


painterdrown Zheng


painterdrown Zheng


painterdrown Zheng


painterdrown Zheng


painterdrown Zheng




�ୣa୲
�୲aୱk

�
�୲aୱk

�ୣa୲
�୲aୱk

(a) per-frame network (b) deep feature flow (DFF) network

current frame key frame current frame

⋯

⋯
propagation

current frame resultkey frame resultcurrent frame result

Figure 2. Illustration of video recognition using per-frame network

evaluation (a) and the proposed deep feature flow (b).

G(q,p+ δp) = g(qx, px + δpx) · g(qy, py + δpy), (2)

where g(a, b) = max(0, 1− |a− b|).
We note that Eq. (1) is fast to compute as a few terms are

non-zero.

The spatial warping may be inaccurate due to errors in

flow estimation, object occlusion, etc. To better approx-

imate the features, their amplitudes are modulated by a

“scale field” Si→k, which is of the same spatial and chan-

nel dimensions as the feature maps. The scale field is ob-

tained by applying a “scale function” S on the two frames,

Si→k = S(Ik, Ii).
Finally, the feature propagation function is defined as

fi = W(fk,Mi→k,Si→k), (3)

where W applies Eq.(1) for all locations and all channels

in the feature maps, and multiples the features with scales

Si→k in an element-wise way.

The proposed video recognition algorithm is called deep

feature flow. It is summarized in Algorithm 1. Notice that

any flow function F , such as the hand-crafted low-level flow

(e.g., SIFT-Flow [26]), is readily applicable. Training the

flow function is not obligate, and the scale function S is set

to ones everywhere.

Deep Feature Flow Training A flow function is origi-

nally designed to obtain correspondence of low-level image

pixels. It can be fast in inference, but may not be accu-

rate enough for the recognition task, in which the high-level

feature maps change differently, usually slower than pix-

els [21, 38]. To model such variations, we propose to also

use a CNN to estimate the flow field and the scale field such

Algorithm 1 Deep feature flow inference algorithm for

video recognition.

1: input: video frames {Ii}
2: k = 0; ⊲ initialize key frame

3: f0 = Nfeat(I0)
4: y0 = Ntask(f0)
5: for i = 1 to ∞ do

6: if is key frame(i) then ⊲ key frame scheduler

7: k = i ⊲ update the key frame

8: fk = Nfeat(Ik)
9: yk = Ntask(fk)

10: else ⊲ use feature flow

11: fi = W(fk,F(Ik, Ii),S(Ik, Ii)) ⊲ propagation

12: yi = Ntask(fi)
13: end if

14: end for

15: output: recognition results {yi}

that all the components can be jointly trained end-to-end for

the task.

The architecture is illustrated in Figure 2(b). Train-

ing is performed by stochastic gradient descent (SGD). In

each mini-batch, a pair of nearby video frames, {Ik, Ii}
1,

0 ≤ i− k ≤ 9, are randomly sampled. In the forward pass,

feature network Nfeat is applied on Ik to obtain the feature

maps fk. Next, a flow network F runs on the frames Ii, Ik to

estimate the flow field and the scale field. When i > k, fea-

ture maps fk are propagated to fi as in Eq. (3). Otherwise,

the feature maps are identical and no propagation is done.

Finally, task network Ntask is applied on fi to produce the

result yi, which incurs a loss against the ground truth result.

The loss error gradients are back-propagated throughout to

update all the components. Note that our training accom-

modates the special case when i = k and degenerates to the

per-frame training as in Figure 2(a).

The flow network is much faster than the feature net-

work, as will be elaborated later. It is pre-trained on the

Flying Chairs dataset [9]. We then add the scale function

S as a sibling output at the end of the network, by increas-

ing the number of channels in the last convolutional layer

appropriately. The scale function is initialized to all ones

(weights and biases in the output layer are initialized as 0s

and 1s, respectively). The augmented flow network is then

fine-tuned as in Figure 2(b).

The feature propagation function in Eq.(3) is unconven-

tional. It is parameter free and fully differentiable. In back-

propagation, we compute the derivative of the features in fi
with respect to the features in fk, the scale field Si→k, and

the flow field Mi→k. The first two are easy to compute us-

ing the chain rule. For the last, from Eq. (1) and (3), for

1The same notations are used for consistency although there is no

longer the concept of “key frame” during training.
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each channel c and location p in current frame, we have

∂f ci (p)

∂Mi→k(p)
= Sc

i→k(p)
∑

q

∂G(q,p+ δp)

∂δp
f ck(q). (4)

The term
∂G(q,p+δp)

∂δp
can be derived from Eq. (2). Note that

the flow field M(·) is two-dimensional and we use ∂δp to

denote ∂δpx and ∂δpy for simplicity.

The proposed method can easily be trained on datasets

where only sparse frames are annotated, which is usually

the case due to the high labeling costs in video recogni-

tion tasks [29, 11, 6]. In this case, the per-frame training

(Figure 2(a)) can only use annotated frames, while DFF can

easily use all frames as long as frame Ii is annotated. In

other words, DFF can fully use the data even with sparse

ground truth annotation. This is potentially beneficial for

many video recognition tasks.

Inference Complexity Analysis For each non-key

frame, the computational cost ratio of the proposed ap-

proach (line 11-12 in Algorithm 1) and per-frame approach

(line 8-9) is

r =
O(F) +O(S) +O(W) +O(Ntask)

O(Nfeat) +O(Ntask)
, (5)

where O(·) measures the function complexity.

To understand this ratio, we firstly note that the com-

plexity of Ntask is usually small. Although its split point

in N is kind of arbitrary, as verified in experiment, it is

sufficient to keep only one learnable weight layer in Ntask

in our implementation (see Sec. 4). While both Nfeat

and F have considerable complexity (Section 4), we have

O(Ntask) ≪ O(Nfeat) and O(Ntask) ≪ O(F).
We also have O(W) ≪ O(F) and O(S) ≪ O(F) be-

cause W and S are very simple. Thus, the ratio in Eq. (5) is

approximated as

r ≈
O(F)

O(Nfeat)
. (6)

It is mostly determined by the complexity ratio of flow

network F and feature network Nfeat, which can be pre-

cisely measured, e.g., by their FLOPs. Table 2 shows its

typical values in our implementation.

Compared to the per-frame approach, the overall

speedup factor in Algorithm 1 also depends on the spar-

sity of key frames. Let there be one key frame in every l
consecutive frames, the speedup factor is

s =
l

1 + (l − 1) ∗ r
. (7)

Key Frame Scheduling As indicated in Algorithm 1

(line 6) and Eq. (7), a crucial factor for inference speed is

when to allocate a new key frame. In this work, we use a

FlowNet FlowNet Half FlowNet Inception

ResNet-50 9.20 33.56 68.97

ResNet-101 12.71 46.30 95.24

Table 2. The approximated complexity ratio in Eq. (6) for different

feature network Nfeat and flow network F , measured by their

FLOPs. See Section 4. Note that r ≪ 1 and we use 1

r
here for

clarify. A significant per-frame speedup factor is obtained.

simple fixed key frame scheduling, that is, the key frame

duration length l is a fixed constant. It is easy to implement

and tune. However, varied changes in image content may

require a varying l to provide a smooth tradeoff between

accuracy and speed. Ideally, a new key frame should be

allocated when the image content changes drastically.

How to design effective and adaptive key frame schedul-

ing can further improve our work. Currently it is beyond

the scope of this work. Different video tasks may present

different behaviors and requirements. Learning an adaptive

key frame scheduler from data seems an attractive choice.

This is worth further exploration and left as future work.

4. Network Architectures

The proposed approach is general for different networks

and recognition tasks. Towards a solid evaluation, we adopt

the state-of-the-art architectures and important vision tasks.

Flow Network We adopt the state-of-the-art CNN based

FlowNet architecture (the “Simple” version) [9] as default.

We also designed two variants of lower complexity. The

first one, dubbed FlowNet Half, reduces the number of con-

volutional kernels in each layer of FlowNet by half and the

complexity to 1
4 . The second one, dubbed FlowNet Incep-

tion, adopts the Inception structure [42] and reduces the

complexity to 1
8 of that of FlowNet.

The three flow networks are pre-trained on the synthetic

Flying Chairs dataset in [9]. The output stride is 4. The in-

put image is half-sized. The resolution of flow field is there-

fore 1
8 of the original resolution. As the feature stride of the

feature network is 16 (as described below), the flow field

and the scale field is further down-sized by half using bi-

linear interpolation to match the resolution of feature maps.

This bilinear interpolation is realized as a parameter-free

layer in the network and also differentiated during training.

Feature Network We use ResNet models [16], specifi-

cally, the ResNet-50 and ResNet-101 models pre-trained for

ImageNet classification as default. The last 1000-way clas-

sification layer is discarded. The feature stride is reduced

from 32 to 16 to produce denser feature maps, following the

practice of DeepLab [4, 5] for semantic segmentation, and

R-FCN [8] for object detection. The first block of the conv5

layers are modified to have a stride of 1 instead of 2. The

holing algorithm [4] is applied on all the 3×3 convolutional
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kernels in conv5 to keep the field of view (dilation=2). A

randomly initialized 3×3 convolution is appended to conv5

to reduce the feature channel dimension to 1024, where the

holing algorithm is also applied (dilation=6). The resulting

1024-dimensional feature maps are the intermediate feature

maps for the subsequent task.

Table 2 presents the complexity ratio Eq. (6) of feature

networks and flow networks.

Semantic Segmentation A randomly initialized 1 × 1
convolutional layer is applied on the intermediate feature

maps to produce (C+1) score maps, where C is the number

of categories and 1 is for background category. A following

softmax layer outputs the per-pixel probabilities. Thus, the

task network only has one learnable weight layer. The over-

all network architecture is similar to DeepLab with large

field-of-view in [5].

Object Detection We adopt the state-of-the-art R-

FCN [8]. On the intermediate feature maps, two branches of

fully convolutional networks are applied on the first half and

the second half 512-dimensional of the intermediate feature

maps separately, for sub-tasks of region proposal and detec-

tion, respectively.

In the region proposal branch, the RPN network [34]

is applied. We use na = 9 anchors (3 scales and 3 as-

pect ratios). Two sibling 1 × 1 convolutional layers out-

put the 2na-dimensional objectness scores and the 4na-

dimensional bounding box (bbox) regression values, re-

spectively. Non-maximum suppression (NMS) is applied to

generate 300 region proposals for each image. Intersection-

over-union (IoU) threshold 0.7 is used.

In the detection branch, two sibling 1 × 1 convolu-

tional layers output the position-sensitive score maps and

bbox regression maps, respectively. They are of dimensions

(C + 1)k2 and 4k2, respectively, where k banks of classi-

fiers/regressors are employed to encode the relative position

information. See [8] for details. On the position-sensitive

score/bbox regression maps, position-sensitive ROI pool-

ing is used to obtain the per-region classification score and

bbox regression result. No free parameters are involved in

the per-region computation. Finally, NMS is applied on the

scored and regressed region proposals to produce the detec-

tion result, with IoU threshold 0.3.

5. Experiments

Unlike image datasets, large scale video dataset is much

harder to collect and annotate. Our approach is evaluated

on the two recent datasets: Cityscapes [6] for semantic seg-

mentation, and ImageNet VID [36] for object detection.

5.1. Experiment Setup

Cityscapes It is for urban scene understanding and au-

tonomous driving. It contains snippets of street scenes col-

lected from 50 different cities, at a frame rate of 17 fps. The

train, validation, and test sets contain 2975, 500, and 1525

snippets, respectively. Each snippet has 30 frames, where

the 20th frame is annotated with pixel-level ground-truth la-

bels for semantic segmentation. There are 30 semantic cat-

egories. Following the protocol in [5], training is performed

on the train set and evaluation is performed on the validation

set. The semantic segmentation accuracy is measured by the

pixel-level mean intersection-over-union (mIoU) score.

In both training and inference, the images are resized to

have shorter sides of 1024 and 512 pixels for the feature net-

work and the flow network, respectively. In SGD training,

20K iterations are performed on 8 GPUs (each GPU holds

one mini-batch, thus the effective batch size ×8), where the

learning rates are 10−3 and 10−4 for the first 15K and the

last 5K iterations, respectively.

ImageNet VID It is for object detection in videos. The

training, validation, and test sets contain 3862, 555, and 937

fully-annotated video snippets, respectively. The frame rate

is 25 or 30 fps for most snippets. There are 30 object cate-

gories, which are a subset of the categories in the ImageNet

DET image dataset2. Following the protocols in [22, 25],

evaluation is performed on the validation set, using the stan-

dard mean average precision (mAP) metric.

In both training and inference, the images are resized to

have shorter sides of 600 pixels and 300 pixels for the fea-

ture network and the flow network, respectively. In SGD

training, 60K iterations are performed on 8 GPUs, where

the learning rates are 10−3 and 10−4 for the first 40K and

the last 20K iterations, respectively.

During training, besides the ImageNet VID train set, we

also used the ImageNet DET train set (only the same 30

category labels are used), following the protocols in [22,

25]. Each mini-batch samples images from either ImageNet

VID or ImageNet DET datasets, at 2 : 1 ratio.

5.2. Evaluation Methodology and Results

Deep feature flow is flexible and allows various design

choices. We evaluate their effects comprehensively in the

experiment. For clarify, we fix their default values through-

out the experiments, unless specified otherwise. For feature

network Nfeat, ResNet-101 model is default. For flow net-

work F , FlowNet (section 4) is default. Key-frame duration

length l is 5 for Cityscapes [6] segmentation and 10 for Im-

ageNet VID [36] detection by default, based on different

frame rate of videos in the datasets..

For each snippet we evaluate l image pairs, (k, i), k =
i − l + 1, ..., i, for each frame i with ground truth anno-

tation. Time evaluation is on a workstation with NVIDIA

K40 GPU and Intel Core i7-4790 CPU.

Validation of DFF Architecture We compared DFF

with several baselines and variants, as listed in Table 3.

2http://www.image-net.org/challenges/LSVRC/
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method training of image recognition network N training of flow network F

Frame (oracle baseline) trained on single frames as in Fig. 2 (a) no flow network used

SFF-slow same as Frame SIFT-Flow [26] (w/ best parameters), no training

SFF-fast same as Frame SIFT-Flow [26] (w/ default parameters), no training

DFF trained on frame pairs as in Fig. 2 (b) init. on Flying Chairs [9], fine-tuned in Fig. 2 (b)

DFF fix N same as Frame, then fixed in Fig. 2 (b) same as DFF

DFF fix F same as DFF init. on Flying Chairs [9], then fixed in Fig. 2 (b)

DFF separate same as Frame init. on Flying Chairs [9]

Table 3. Description of variants of deep feature flow (DFF), shallow feature flow (SFF), and the per-frame approach (Frame).

Methods
Cityscapes (l = 5) ImageNet VID (l = 10)

mIoU(%) runtime (fps) mAP(%) runtime (fps)

Frame 71.1 1.52 73.9 4.05

SFF-slow 67.8 0.08 70.7 0.26

SFF-fast 67.3 0.95 69.7 3.04

DFF 69.2 5.60 73.1 20.25

DFF fix N 68.8 5.60 72.3 20.25

DFF fix F 67.0 5.60 68.8 20.25

DFF separate 66.9 5.60 67.4 20.25

Table 4. Comparison of accuracy and runtime (mostly in GPU) of

various approaches in Table 3. Note that, the runtime for SFF con-

sists of CPU runtime of SIFT-Flow and GPU runtime of Frame,

since SIFT-Flow only has CPU implementation.

• Frame: train N on single frames with ground truth.

• SFF: use pre-computed large-displacement flow (e.g.,

SIFT-Flow [26]). SFF-fast and SFF-slow adopt differ-

ent parameters.

• DFF: the proposed approach, N and F are trained

end-to-end. Several variants include DFF fix N (fix

N in training), DFF fix F (fix F in training), and DFF

seperate (N and F are separately trained).

Table 4 summarizes the accuracy and runtime of all ap-

proaches. We firstly note that the baseline Frame is strong

enough to serve as a reference for comparison. Our im-

plementation resembles the state-of-the-art DeepLab [5] for

semantic segmentation and R-FCN [8] for object detection.

In DeepLab [5], an mIoU score of 69.2% is reported with

DeepLab large field-of-view model using ResNet-101 on

Cityscapes validation dataset. Our Frame baseline achieves

slightly higher 71.1%, based on the same ResNet model.

For object detection, Frame baseline has mAP 73.9% us-

ing R-FCN [8] and ResNet-101. As a reference, a com-

parable mAP score of 73.8% is reported in [22], by com-

bining CRAFT [46] and DeepID-net [30] object detectors

trained on the ImageNet data, using both VGG-16 [39] and

GoogleNet-v2 [20] models, with various tricks (multi-scale

training/testing, adding context information, model ensem-

ble). We do not adopt above tricks as they complicate the

comparison and obscure the conclusions.

SFF-fast has a reasonable runtime but accuracy is sig-

nificantly decreased. SFF-slow uses the best parameters for

flow estimation. It is much slower. Its accuracy is slightly

improved but still poor. This indicates that an off-the-shelf

flow may be insufficient.

The proposed DFF approach has the best overall perfor-

mance. Its accuracy is slightly lower than that of Frame and

it is 3.7 and 5.0 times faster for segmentation and detection,

respectively. As expected, the three variants without using

joint training have worse accuracy. Especially, the accuracy

drop by fixing F is significant. This indicates a jointing

end-to-end training (especially flow) is crucial.

We also tested another variant of DFF with the scale

function S removed (Algorithm 1, Eq (3), Eq. (4)). The

accuracy drops for both segmentation and detection (less

than one percent). It shows that the scaled modulation of

features is slightly helpful.

Accuracy-Speedup Tradeoff We investigate the trade-

off by varying the flow network F , the feature network

Nfeat, and key frame duration length l. Since Cityscapes

and ImageNet VID datasets have different frame rates, we

tested l = 1, 2, ..., 10 for segmentation and l = 1, 2, ..., 20
for detection.

The results are summarized in Figure 3. Overall, DFF

achieves significant speedup with decent accuracy drop. It

smoothly trades in accuracy for speed and fits different

application needs flexibly. For example, in detection, it

improves 4.05 fps of ResNet-101 Frame to 41.26 fps of

ResNet-101 + FlowNet Inception. The 10× faster speed is

at the cost of moderate accuracy drop from 73.9% to 69.5%.

In segmentation, it improves 2.24 fps of ResNet-50 Frame

to 17.48 fps of ResNet-50 FlowNet Inception, at the cost of

accuracy drop from 69.7% to 62.4%.

What flow F should we use? From Figure 3, the smallest

FlowNet Inception is advantageous. It is faster than its two
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Figure 3. (better viewed in color) Illustration of accuracy-speed

tradeoff under different implementation choices on ImageNet VID

detection (top) and on Cityscapes segmentation (bottom).

counterparts at the same accuracy level, most of the times.

What feature Nfeat should we use? In high-accuracy

zone, an accurate model ResNet-101 is clearly better than

ResNet-50. In high-speed zone, the conclusions are differ-

ent on the two tasks. For detection, ResNet-101 is still ad-

vantageous. For segmentation, the performance curves in-

tersect at around 6.35 fps point. For higher speed, ResNet-

50 becomes better than ResNet-101. The seemingly dif-

ferent conclusions can be partially attributed to the differ-

ent video frame rates, the extents of dynamics on the two

datasets. The Cityscapes dataset not only has a low frame

rate 17 fps, but also more quick dynamics. It would be hard

to utilize temporal redundancy for a long propagation. To

achieve the same high speed, ResNet-101 needs a larger key

frame length l than ResNet-50. This in turn significantly

increases the difficulty of learning.

Above observations provide useful recommendations for

practical applications. Yet, they are more heuristic than gen-

eral, as they are observed only on the two tasks, on limited

data. We plan to explore the design space more in the future.

Split point of Ntask Where should we split Ntask in N ?

Recall that the default Ntask keeps one layer with learning

# layers in Ntask

Cityscapes (l=5) ImageNet VID (l=10)

mIoU(%) runtime (fps) mAP(%) runtime (fps)

21 69.1 2.87 73.2 7.23

12 69.1 3.14 73.3 8.04

5 69.2 3.89 73.2 9.99

1 (default) 69.2 5.60 73.1 20.25

0 69.5 5.61 72.7 20.40

Table 5. Results of using different split points for Ntask.

weight (the 1 × 1 conv over 1024-d feature maps, see Sec-

tion 4). Before this is the 3 × 3 conv layer that reduces di-

mension to 1024. Before this is series of “Bottleneck” unit

in ResNet [16], each consisting of 3 layers. We back move

the split point to make different Ntasks with 5, 12, and 21

layers, respectively. The one with 5 layers adds the dimen-

sion reduction layer and one bottleneck unit (conv5c). The

one with 12 layers adds two more units (conv5a and conv5b)

at the beginning of conv5. The one with 21 layers adds three

more units in conv4. We also move the only layer in default

Ntask into Nfeat, leaving Ntask with 0 layer (with learn-

able weights). This is equivalent to directly propagate the

parameter-free score maps, in both semantic segmentation

and object detection.

Table 5 summarizes the results. Overall, the accuracy

variation is small enough to be neglected. The speed be-

comes lower when Ntask has more layers. Using 0 layer

is mostly equivalent to using 1 layer, in both accuracy and

speed. We choose 1 layer as default as that leaves some tun-

able parameters after the feature propagation, which could

be more general.

Due to limited space, please see example results and

more details in the online version of this paper.

6. Future Work

Several important aspects are left for further exploration.

It would be interesting to exploit how the joint learning af-

fects the flow quality. We are unable to evaluate as there

lacks ground truth. Current optical flow works are also lim-

ited to either synthetic data [9] or small real datasets, which

is insufficient for deep learning.

Our method can further benefit from improvements in

flow estimation and key frame scheduling. In this paper, we

adopt FlowNet [9] mainly because there are few choices.

Designing faster and more accurate flow network will cer-

tainly receive more attention in the future. For key frame

scheduling, a good scheduler may well significantly im-

prove both speed and accuracy. And this problem is defi-

nitely worth further exploration.

We believe this work opens many new possibilities. We

hope it will inspire more future work.
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