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Abstract

Extending state-of-the-art object detectors from image to

video is challenging. The accuracy of detection suffers from

degenerated object appearances in videos, e.g., motion blur,

video defocus, rare poses, etc. Existing work attempts to ex-

ploit temporal information on box level, but such methods

are not trained end-to-end. We present flow-guided feature

aggregation, an accurate and end-to-end learning frame-

work for video object detection. It leverages temporal co-

herence on feature level instead. It improves the per-frame

features by aggregation of nearby features along the mo-

tion paths, and thus improves the video recognition accu-

racy. Our method significantly improves upon strong single-

frame baselines in ImageNet VID [33], especially for more

challenging fast moving objects. Our framework is prin-

cipled, and on par with the best engineered systems win-

ning the ImageNet VID challenges 2016, without additional

bells-and-whistles. The code would be released.

1. Introduction

Recent years have witnessed significant progress in ob-

ject detection [11]. State-of-the-art methods share a similar

two-stage structure. Deep Convolutional Neural Networks

(CNNs) [22, 36, 40, 14] are firstly applied to generate a

set of feature maps over the whole input image. A shallow

detection-specific network [13, 10, 30, 26, 5] then generates

the detection results from the feature maps.

These methods achieve excellent results in still images.

However, directly applying them for video object detection

is challenging. The recognition accuracy suffers from de-

teriorated object appearances in videos that are seldom ob-

served in still images, such as motion blur, video defocus,

rare poses, etc (See an example in Figure 1 and more in Fig-

ure 2). As quantified in experiments, a state-of-the-art still-

image object detector (R-FCN [5] + ResNet-101 [14]) dete-

riorates remarkably for fast moving objects (Table 1 (a)).

∗This work is done when Xizhou Zhu and Yujie Wang are interns at

Microsoft Research Asia

Nevertheless, the video has rich information about the

same object instance, usually observed in multiple “snap-

shots” in a short time. Such temporal information is ex-

ploited in existing video object detection methods [18, 19,

12, 23] in a simple way. These methods firstly apply ob-

ject detectors in single frames and then assemble the de-

tected bounding boxes across temporal dimension in a ded-

icated post processing step. This step relies on off-the-

shelf motion estimation such as optical flow, and hand-

crafted bounding box association rules such as object track-

ing. In general, such methods manipulate the single-frame

detection boxes with mediocre qualities but do not improve

the detection quality. The performance improvement is

from heuristic post-processing instead of principled learn-

ing. There is no end-to-end training. In this work, these

techniques are called box level methods.

We attempt to take a deeper look at video object detec-

tion. We seek to improve the detection or recognition qual-

ity by exploiting temporal information, in a principled way.

As motivated by the success in image recognition [11], fea-

ture matters, and we propose to improve the per-frame fea-

ture learning by temporal aggregation. Note that the fea-

tures of the same object instance are usually not spatially

aligned across frames due to video motion. A naive feature

aggregation may even deteriorate the performance, as elab-

orated in Table 1 (b) later. This suggests that it is critical to

model the motion during learning.

In this work, we propose flow-guided feature aggrega-

tion (FGFA). As illustrated in Figure 1, the feature extrac-

tion network is applied on individual frames to produce the

per-frame feature maps. To enhance the features at a refer-

ence frame, an optical flow network [8] estimates the mo-

tions between the nearby frames and the reference frame.

The feature maps from nearby frames are warped to the ref-

erence frame according to the flow motion. The warped fea-

tures maps, as well as its own feature maps on the reference

frame, are aggregated according to an adaptive weighting

network. The resulting aggregated feature maps are then

fed to the detection network to produce the detection result

on the reference frame. All the modules of feature extrac-

tion, flow estimation, feature aggregation, and detection are
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Figure 1. Illustration of FGFA (flow-guided feature aggregation).

For each input frame, a feature map sensitive to “cat” is visualized.

The feature activations are low at the reference frame t, resulting in

detection failure in the reference frame. The nearby frames t− 10
and t + 10 have high activations. After FGFA, the feature map at

the reference frame is improved and detection on it succeeds.

trained end-to-end.

Compared with box level methods, our approach works

on feature level, performs end-to-end learning and is com-

plementary (e.g., to Seq-NMS [12]). It improves the per-

frame features and generates high quality bounding boxes.

The boxes can be further refined by box-level methods.

Our approach is evaluated on the large-scale ImageNet

VID dataset [33]. Rigorous ablation study verifies that it

is effective and significantly improves upon strong single-

frame baselines. Combination with box-level methods pro-

duces further improvement. We report object detection ac-

curacy on par with the best engineered systems winning

the ImageNet VID challenges, without additional bells-

and-whistles (e.g., model ensembling, multi-scale train-

ing/testing, etc.).

In addition, we perform an in-depth evaluation accord-

ing to the object motion magnitude. The results indicate

that the fast moving objects are far more challenging than

slow ones. This is also where our approach gains the most.

Our method can make effective use of the rich appearance

information in the varied snapshots of fast moving objects.

2. Related Work

Object detection from image. State-of-the-art meth-

ods for general object detection [10, 30, 26, 5] are mainly

based on deep CNNs [22, 36, 40, 14]. In [11], a multi-

stage pipeline called Regions with Convolutional Neural

Networks (R-CNN) is proposed for training deep CNN to

classify region proposals for object detection. To speedup,

ROI pooling is introduced to the feature maps shared on

the whole image in SPP-Net [13] and Fast R-CNN [10].

In Faster R-CNN [30], the region proposals are generated

by the Region Proposal Network (RPN), and features are

shared between RPN and Fast R-CNN. Most recently, R-

FCN [5] replaces ROI pooling operation on the intermedi-

ate feature maps with position-sensitivity ROI pooling op-

eration on the final score maps, pushing the feature sharing

to an extreme.

In contrast to these methods of still-image object detec-

tion, our method focuses on object detection in videos. It

incorporates temporal information to improve the quality of

convolutional feature maps, and can easily benefit from the

improvement of still-image object detectors.

Object detection in video. Recently, ImageNet intro-

duces a new challenge for object detection from videos

(VID), which brings object detection into the video domain.

In this challenge, nearly all of existing methods incorporate

temporal information only on the final stage “ bounding-

box post-processing”. T-CNN [18, 19] propagates predicted

bounding boxes to neighboring frames according to pre-

computed optical flows, and then generates tubelets by ap-

plying tracking algorithms from high-confidence bounding

boxes. Boxes along the tubelets are re-scored based on

tubelets classification. Seq-NMS [12] constructs sequences

along nearby high-confidence bounding boxes from consec-

utive frames. Boxes of the sequence are re-scored to the

average confidence, other boxes close to this sequence are

suppressed. MCMOT [23] formulates the post-processing

as a multi-object tracking problem. A series of hand-craft

rules (e.g., detector confidences, color/motion clues, chang-

ing point detection and forward-backward validation) are

used to determine whether bounding boxes belong to the

tracked objects, and to further refine the tracking results.

Unfortunately, all of these methods are multi-stage pipeline,

where results in each stage would rely on the results from

previous stages. Thus, it is difficult to correct errors pro-

duced by previous stages.

By contrast, our method considers temporal information

at the feature level instead of the final box level. The en-

tire system is end-to-end trained for the task of video ob-

ject detection. Besides, our method can further incorporate

such bounding-box post-processing techniques to improve

the recognition accuracy.

Motion estimation by flow. Temporal information

in videos requires correspondences in raw pixels or fea-

409

painterdrown Zheng


painterdrown Zheng


painterdrown Zheng


painterdrown Zheng


painterdrown Zheng


painterdrown Zheng




tures to build the relationship between consecutive frames.

Optical flow is widely used in many video analysis and

processing. Traditional methods are dominated by vari-

ational approaches [2, 15], which mainly address small

displacements [43]. The recent focus is on large dis-

placements [3], and combinatorial matching (e.g., Deep-

Flow [44], EpicFlow [31]) has been integrated into the vari-

ational approach. These approaches are all hand-crafted.

Deep learning based methods (e.g., FlowNet [8] and its

successors [28, 17]) have been exploited for optical flow

recently. The most related work to ours is deep feature

flow [49], which shows the information redundancy in

video can be exploited to speed up video recognition at mi-

nor accuracy drop. It shows the possibility of joint training

the flow sub-network and the recognition sub-network.

In this work, we focus on another aspect of associating

and assembling the rich appearance information in consec-

utive frames to improve the feature representation, and then

the video recognition accuracy. We follow the design of

deep feature flow to enable feature warping across frames.

Feature aggregation. Feature aggregation is widely

used in action recognition [34, 20, 24, 47, 38, 1, 21, 41]

and video description [7, 46]. On one hand, most of

these work [34, 24, 47, 7, 46, 1, 9, 35] use recurrent neu-

ral network (RNNs) to aggregate features from consecu-

tive frames. On the other hand, exhaustive spatial-temporal

convolution is used to directly extract spatial-temporal fea-

tures [38, 21, 41, 42]. However, the convolutional ker-

nel size in these methods may limit the modeling of fast-

moving objects. To address this issue, a large kernel size

should be considered, but it will greatly increase the pa-

rameter number, brining issues of overfitting, computational

overhead and memory consumption. By contrast, our ap-

proach relies on flow-guided aggregation, and can be scal-

able to different types of object motion.

Visual tracking. Recently, deep CNNs have been used

for object tracking [25, 16] and achieved impressive track-

ing accuracy. When tracking a new target, a new network

is created by combining the shared layers in the pre-trained

CNN with a new binary classification layer, which is online

updated. Tracking is apparently different from the video

object detection task, because it assumes the initial local-

ization of an object in the first frame and it does not require

predicting class labels.

3. Flow Guided Feature Aggregation

3.1. A Baseline and Motivation

Given the input video frames {Ii}, i = 1, . . . ,∞, we aim

to output object bounding boxes on all the frames, {yi}, i =
1, . . . ,∞. A baseline approach is to apply an off-the-shelf

object detector to each frame individually.

Modern CNN-based object detectors share a similar

rare
poses

… …

video
defocus

… …

motion
blur

… …

part
occlusion

… …

Figure 2. Typical deteriorated object appearance in videos.

structure [11, 10, 30, 26, 5]. A deep convolutional sub-

network Nfeat, is applied on the input image I , to produce

feature maps f = Nfeat(I) on the whole image. A shal-

low detection-specific sub-network, Ndet, is applied on the

feature maps to generate the output, y = Ndet(f).
Video frames contain drastic appearance changes of the

same object instance, as exemplified in Figure 2. Detection

on single frames generates unstable results and fails when

appearance is poor. Figure 1 presents an example. The fea-

ture responses for “cat” category are low at the reference

frame t due to motion blur. This causes single frame detec-

tion failure. Observing that the nearby frames t − 10 and

t+10 have high responses, their features can be propagated

to the reference frame. After the features on the reference

frame is enhanced, detection on it succeeds.

Two modules are necessary for such feature propagation

and enhancement: 1) motion-guided spatial warping. It es-

timates the motion between frames and warps the feature

maps accordingly. 2) feature aggregation module. It figures

out how to properly fuse the features from multiple frames.

Together with the feature extraction and detection networks,

these are the building blocks of our approach. They are

elaborated below.

3.2. Model Design

Flow-guided warping. As motivated by [49], given a

reference frame Ii and a neighbor frame Ij , a flow field

Mi→j = F(Ii, Ij) is estimated by a flow network F (e.g.,

FlowNet [8]).

The feature maps on the neighbor frame are warped to

the reference frame according to the flow. The warping

function is defined as

fj→i = W(fj ,Mi→j) = W(fj ,F(Ii, Ij)), (1)

where W(·) is the bilinear warping function applied on all

the locations for each channel in the feature maps, and fj→i

denotes the feature maps warped from frame j to frame i.
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Feature aggregation. After feature warping, the ref-

erence frame accumulates multiple feature maps from

nearby frames (including its own). These feature maps

provide diverse information of the object instances (e.g.,

varied illuminations/viewpoints/poses/non-rigid deforma-

tions). For aggregation, we employ different weights at dif-

ferent spatial locations and let all feature channels share the

same spatial weight. The 2-D weight maps for warped fea-

tures fj→i are denoted as wj→i. The aggregated features at

the reference frame f̄i is then obtained as

f̄i =
∑i+K

j=i−K
wj→ifj→i, (2)

where K specifies the range of the neighbor frames for ag-

gregation (K = 10 by default). Equation (2) is similar to

the formula of attention models [32], where varying weights

are assigned to the features in the memory buffer.

The aggregated features f̄i are then fed into the detection

sub-network to obtain the results,

yi = Ndet(f̄i). (3)

Compared to the baseline and previous box level meth-

ods, our method aggregates information from multiple

frames before producing the final detection results.

Adaptive weight. The adaptive weight indicates the im-

portance of all buffer frames [Ii−K , . . . , Ii+K ] to the refer-

ence frame Ii at each spatial location. Specifically, at loca-

tion p, if the warped features fj→i(p) is close to the features

fi(p), it is assigned to a larger weight. Otherwise, a smaller

weight is assigned. Here, we use the cosine similarity met-

ric [27] to measure the similarity between the warped fea-

tures and the features extracted from the reference frame.

Moreover, we do not directly use the convolutional fea-

tures obtained from Nfeat(I). Instead, we apply a tiny fully

convolutional network E(·) to features fi and fj→i, which

projects the features to a new embedding for similarity mea-

sure and is dubbed as the embedding sub-network.

We estimate the weight by

wj→i(p) = exp(
fe
j→i(p) · f

e
i (p)

|fe
j→i(p)||f

e
i (p)|

), (4)

where fe = E(f) denotes embedding features for sim-

ilarity measurement, and the weight wj→i is normal-

ized for every spatial location p over the nearby frames,∑i+K

j=i−K wj→i(p) = 1. The estimation of weight could

be viewed as the process that the cosine similarity between

embedding features passes through the SoftMax operation.

3.3. Training and Inference

Inference. Algorithm 1 summarizes the inference algo-

rithm. Given an input video of consecutive frames {Ii} and

Algorithm 1 Inference algorithm of flow guided feature ag-

gregation for video object detection.

1: input: video frames {Ii}, aggregation range K

2: for k = 1 to K + 1 do ⊲ initialize feature buffer

3: fk = Nfeat(Ik)
4: end for

5: for i = 1 to ∞ do ⊲ reference frame

6: for j = max(1, i−K) to i+K do ⊲ nearby frames

7: fj→i = W(fj ,F(Ii, Ij)) ⊲ flow-guided warp

8: fe
j→i, f

e
i = E(fj→i, fi) ⊲ compute embedding features

9: wj→i = exp(
fe
j→i·f

e
i

|fe
j→i

||fe
i
|
) ⊲ compute aggregation weight

10: end for

11: f̄i =
∑i+K

j=i−K
wj→ifj→i ⊲ aggregate features

12: yi = Ndet(f̄i) ⊲ detect on the reference frame

13: fi+K+1 = Nfeat(Ii+K+1) ⊲ update feature buffer

14: end for

15: output: detection results {yi}

the specified aggregation range K, the proposed method se-

quentially processes each frame with a sliding feature buffer

on the nearby frames (of length 2K + 1 in general, except

for the beginning and the ending K frames). At initial, the

feature network is applied on the beginning K + 1 frames

to initialize the feature buffer (L2-L4 in Algorithm 1). Then

the algorithm loops over all the video frames to perform

video object detection, and to update the feature buffer. For

each frame i as the reference, the feature maps of the nearby

frames in the feature buffer are warped with respect to it,

and their respective aggregation weights are calculated (L6-

L10). Then the warped features are aggregated and fed to

the detection network for object detection (L11-L12). Be-

fore taking the (i+1)-th frame as the reference, the feature

maps are extracted on the (i+K+1)-th frame and are added

to the feature buffer (L13).

As for runtime complexity, the ratio of the proposed

method versus the single-frame baseline is as

r = 1 +
(2K + 1) · (O(F) +O(E) +O(W))

O(Nfeat) +O(Ndet)
, (5)

where O(·) measures the function complexity. Typically,

the complexity of Ndet, E and W can be ignored when they

are compared with Nfeat. The ratio is approximated as: r ≈

1+ (2K+1)·O(F)
O(Nfeat)

. The increased computation mostly comes

from F . This is affordable, because the complexity of F is

also much lower than that of Nfeat in general.

Training. The entire FGFA architecture is fully differ-

entiable and can be trained end-to-end. The only thing to

note is that the feature warping module is implemented by

bilinear interpolation and also fully differentiable w.r.t. both

of the feature maps and the flow field.

Temporal dropout. In SGD training, the aggregation

range number K is limited by memory. We use a large K in
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inference but a small K(= 2 by default) in training. This is

no problem as the adaptive weights are properly normalized

during training and inference, respectively. Note that during

training, the neighbor frames are randomly sampled from a

large range that is equal to the one during inference. As an

analogy to dropout [37] technique, this can be considered as

a temporal dropout, by discarding random temporal frames.

As evidenced in Table 3, this training strategy works well.

3.4. Network Architecture

We introduce the incarnation of different sub-networks

in our FGFA model.

Flow network. We use FlowNet [8] (“simple” version).

It is pre-trained on the Flying Chairs dataset [8]. It is ap-

plied on images of half resolution and has an output stride

of 4. As the feature network has an output stride of 16 (see

below), the flow field is downscaled by half to match the

resolution of the feature maps.

Feature network. We adopt the state-of-the-art ResNet

(-50 and -101) [14] and Inception-Resnet [39] as the fea-

ture network. The original Inception-ResNet is designed for

image recognition. To resolve feature misalignment issue

and make it proper for object detection, We utilize a modi-

fied version dubbed as “Aligned-Inception-ResNet”, which

is described in [6]. The ResNet-50, ResNet-101, and the

Aligned-Inception-ResNet models are all pre-trained on Im-

ageNet classification.

The pretrained models are crafted into feature networks

in our FGFA model. We slightly modify the nature of three

models for object detection. We remove the ending aver-

age pooling and the fc layer, and retain the convolution lay-

ers. To increase the feature resolution, following the prac-

tice in [4, 5], the effective stride of the last block is changed

from 32 to 16. Specially, at the beginning of the last block

(“conv5” for both ResNet and Aligned-Inception-ResNet),

the stride is changed from 2 to 1. To retain the receptive

field size, the dilation of the convolutional layers (with ker-

nel size > 1) in the last block is set as 2. Finally, a randomly

initialized 3× 3 convolution is applied on top to reduce the

feature dimension to 1024.

Embedding network. It has three layers: a 1× 1× 512
convolution, a 3× 3× 512 convolution, and a 1× 1× 2048
convolution. It is randomly initialized.

Detection network. We use state-of-the-art R-FCN [5]

and follow the design in [49]. On top of the 1024-d feature

maps, the RPN sub-network and the R-FCN sub-network

are applied, which connect to the first 512-d and the last

512-d features respectively. 9 anchors (3 scales and 3 aspect

ratios) are utilized in RPN, and 300 proposals are produced

on each image. The position-sensitive score maps in R-FCN

are of 7× 7 groups.

4. Experiments

4.1. Experiment Setup

ImageNet VID dataset [33]. It is a prevalent large-scale

benchmark for video object detection. Following the pro-

tocols in [18, 23], model training and evaluation are per-

formed on the 3,862 video snippets from the training set and

the 555 snippets from the validation set, respectively. The

snippets are fully annotated, and are at frame rates of 25 or

30 fps in general. There are 30 object categories. They are

a subset of the categories in the ImageNet DET dataset.

Slow, medium, and fast motion. For better analysis, the

ground truth objects are categorized according to their mo-

tion speed. An object’s speed is measured by its averaged

intersection-over-union (IoU) scores with its corresponding

instances in the nearby frames (±10 frames). The indicator

is dubbed as “motion IoU”. The lower the motion IoU is,

the faster the object moves. Figure 3 presents the histogram

of all motion IoU scores. According to the score, the ob-

jects are divided into slow (score > 0.9), medium (score

∈ [0.7, 0.9]), and fast (score < 0.7) groups, respectively.

Examples from various groups are shown in Figure 4.

In evaluation, besides the standard mean average-

precision (mAP) scores, we also report the mAP scores over

the slow, medium, and fast groups, respectively, denoted as

mAP(slow), mAP(medium), and mAP(fast). This provides

us a more detailed analysis and in-depth understanding.

Implementation details. During training, following

[18, 23], both the ImageNet DET training and the ImageNet

VID training sets are utilized. Two-phase training is per-

formed. In the first phase, the feature and the detection net-

works are trained on ImageNet DET, using the annotations

of the 30 categories as in ImageNet VID. SGD training is

performed, with one image at each mini-batch. 120K iter-

ations are performed on 4 GPUs, with each GPU holding

one mini-batch. The learning rates are 10−3 and 10−4 in

the first 80K and in the last 40K iterations, respectively. In

the second phase, the whole FGFA model is trained on Im-

ageNet VID, where the feature and the detection networks

are initialized from the weights learnt in the first phase. 60K

iterations are performed on 4 GPUs, with learning rates of

10−3 and 10−4 in the first 40K and in the last 20K iterations,

respectively. In both training and inference, the images are

resized to a shorter side of 600 pixels for the feature net-

work, and a shorter side of 300 pixels for the flow network.

Experiments are performed on a workstation with Intel E5-

2670 v2 CPU 2.5GHz and Nvidia K40 GPU.

4.2. Ablation Study

FGFA Architecture Design Table 1 compares our

FGFA with the single-frame baseline and its variants.

Method (a) is the single-frame baseline. It has a mAP

73.4% using ResNet-101. It is close to the 73.9% mAP
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Nfeat ResNet-50 ResNet-101

methods (a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

multi-frame feature aggregation? X X X X X X X X

adaptive weights? X X X X X X

flow-guided? X X X X

end-to-end training? X X X X X X

mAP (%) 70.6 69.6↓1.0 71.8↑1.2 74.0↑3.4 72.1↑1.5 73.4 72.0↓1.4 74.3↑0.9 76.3↑2.9 74.5↑1.1

mAP (%) (slow) 79.3 81.4↑2.1 81.5↑2.2 82.4↑3.1 81.3↑2.0 82.4 82.3↓0.1 82.2↓0.2 83.5↑1.2 82.5↑0.1

mAP (%) (medium) 68.6 71.4↑2.8 71.4↑2.8 72.6↑4.0 71.5↑2.9 71.6 74.5↑2.9 74.6↑3.0 75.8↑4.2 74.6↑3.0

mAP (%) (fast) 50.1 42.5↓7.6 50.4↑0.3 55.0↑4.9 51.2↑1.1 51.4 44.6↓6.8 52.3↑0.9 57.6↑6.2 53.2↑1.8

runtime (ms) 203 204 220 647 647 288 288 305 733 733

Table 1. Accuracy and runtime of different methods on ImageNet VID validation, using ResNet-50 and ResNet-101 feature extraction

networks. The relative gains compared to the single-frame baseline (a) are listed in the subscript.
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Figure 3. Histogram of the motion IoUs of all ground truth object

instances, and the division of slow, medium and fast groups.
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Figure 4. Example video snippets of object instances with slow,

medium and fast motions. The motion IoUs are 0.98, 0.77 and

0.26, respectively.

instance size small middle large

mAP (%) 24.2 49.5 83.2

mAP (%) (slow) 36.7 56.4 86.9

mAP (%) (medium) 32.4 51.4 80.9

mAP (%) (fast) 24.9 43.7 67.5

Table 2. Detection accuracy of small (area< 502 pixels), medium

(502 ≤area≤ 1502pixels), and large (area> 1502pixels) object

instances of the single-frame baseline (entry (a)) in Table 1.
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Figure 5. Adaptive weight distribution over frames. Left: entry

without flow-guided feature warping (Table 1 (c)); Right: entry

with flow-guided feature warping (Table 1 (d)). The histogram is

performed within the boxes of instances with varying motions.

in [49], which is also based on R-FCN and ResNet-101.

This indicates that our baseline is competitive and serves as

a valid reference for evaluation. Note that we do not add

bells and whistles like multi-scale training/testing, exploit-

ing context information, model ensemble, etc., in order to

facilitate comparison and draw clear conclusions.

Evaluation on motion groups shows that detecting fast

moving objects is very challenging: mAP is 82.4% for slow

motion, and it drops to 51.4% for fast motion. As objects of

different sizes may have different motion speed, we further

analyze the influence of the object size. Table 2 presents the

mAP scores of small, middle, and large objects of different

motion speeds. It shows that “fast motion” is an intrinsic

challenge, irrespective to how large the object is.

Method (b) is a naive feature aggregation approach and a

degenerated variant of FGFA. No flow motion is used. The

flow map Mi→j is set to all zeros in Eq. (1). No adap-

tive weighting is used. The weight wi→j is set to 1
2K+1 in

Eq. (2). The variant is also trained end-to-end in the same

way as FGFA. The mAP decreases to 72.0% using ResNet-

101, 1.4% shy of baseline (a). The decrease for fast motion

(51.4% → 44.6%) is much more significant than that for

slow motion (82.4% → 82.3%). It indicates that it is criti-

cal to consider motion in video object detection.
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# training frames 2* 5

# testing frames 1 5 9 13 17 21* 25 1 5 9 13 17 21 25

mAP (%) 70.6 72.3 72.8 73.4 73.7 74.0 74.1 70.6 72.4 72.9 73.3 73.6 74.1 74.1

runtime (ms) 203 330 406 488 571 647 726 203 330 406 488 571 647 726

Table 3. Results of using different number of frames in training and inference, using ResNet-50. Default parameters are indicated by *.

method feature network mAP (%) runtime (ms)

single-frame baseline

ResNet-101

73.4 288

+ MGP 74.1 574*

+ Tubelet rescoring 75.1 1662

+ Seq-NMS 76.8 433*

FGFA

ResNet-101

76.3 733

+ MGP 75.5 1019*

+ Tubelet rescoring 76.6 1891

+ Seq-NMS 78.4 873*

FGFA Aligned-

Inception-ResNet

77.8 819

+ Seq-NMS 80.1 954*

Table 4. Results of baseline method and FGFA before and af-

ter combination with box level techniques. As for runtime, en-

try marked with * utilizes CPU implementation of box-level tech-

niques.

Method (c) adds the adaptive weighting module into (b).

It obtains a mAP 74.3%, 2.3% higher than that of (b). Note

that adding the adaptive weighting scheme is of little help

for mAP (slow) and mAP (medium), but is important for

mAP (fast) (44.6% → 52.3%). Figure 5 (Left) shows that

the adaptive weights for the fast moving instances concen-

trate on the frames close to the reference, which have rela-

tively small displacement w.r.t. the reference in general.

Method (d) is the proposed FGFA method, which adds

the flow-guided feature aggregation module to (c). It in-

creases the mAP score by 2% to 76.3%. The improvement

for fast motion is more significant (52.3% → 57.6%). Fig-

ure 5 shows that the adaptive weights in (d) distribute more

evenly over neighbor frames than (c), and it is most noti-

cable for fast motion. It suggests that the flow-guided fea-

ture aggregation effectively promotes the information from

nearby frames in feature aggregation. The proposed FGFA

method improves the overall mAP score by 2.9%, and mAP

(fast) by 6.2% compared to the single-frame baseline (a).

Some example results are shown in Figure 6.

Method (e) is a degenerated version of (d) without using

end-to-end training. It takes the feature and the detection

sub-networks from the single-frame baseline (a), and the

pre-trained off-the-shelf FlowNet. During training, these

modules are fixed and only the embedding sub-network is

learnt. It is clearly worse than (d). This indicates the impor-

tance of end-to-end training in FGFA.

As to runtime, the proposed FGFA method takes 733ms

to process one frame, using ResNet-101 and FlowNet. It is

slower than the single-frame baseline (288ms) because the

flow network is evaluated 2K + 1(K = 10) times for each

frame. To reduce the number of evaluation, we also exper-

imented with another version of FGFA, in which the flow

network is only applied on adjacent frame pairs. The flow

field between non-adjacent frames is obtained by composit-

ing the intermediate flow fields. In this way, the flow field

computation on each adjacent frame pair can be re-used for

different reference frames. The per-frame computation time

of FGFA is reduced to 356ms, much faster than 733ms. The

accuracy is slightly decreased (∼ 1%) due to error accumu-

lation in flow field composition.

# frames in training and inference Due to memory is-

sues, we use the lightweight ResNet-50 in this experiment.

We tried 2 and 5 frames in each mini-batch during SGD

training (5 frame reaches the memory cap), and 1, 5, 9, 13,

17, 21, and 25 frames in inference. Results in Table 3 show

that training with 2 and 5 frames achieves very close accu-

racy. This verifies the effectiveness of our temporal dropout

training strategy. In inference, as expected, the accuracy im-

proves as more frames are used. The improvement saturates

at 21 frames. By default, we sample 2 frames in training and

aggregate over 21 frames in inference.

4.3. Combination with Boxlevel Techniques

Our approach focuses on improving feature quality and

recognition accuracy in video frames. The output object

boxes can be further improved by previous box-level tech-

niques as post-processing. In particular, we tested three

prevalent techniques, namely, motion guided propagation

(MGP) [18], Tubelet rescoring [18], and Seq-NMS [12].

Note that MGP and Tubelet rescoring are used in the win-

ning entry of ImageNet VID challenge 2015 [18]. We uti-

lized the official public code for MGP and Tubelet rescor-

ing, and re-implemented Seq-NMS.

Table 4 presents the results. The three techniques

are firstly combined with our single-frame baseline using

ResNet-101 model. They all improve the baseline. This in-

dicates that such post-processing techniques are effective.

Between them, Seq-NMS obtains the largest gain. When

they are combined with FGFA using ResNet-101 model,

no improvement is observed for MGP and Tubelet rescor-

ing. However, Seq-NMS is still effective (mAP increased to

78.4%). By using Aligned-Inception-ResNet as the feature

network, the mAP of FGFA+Seq-NMS is further improved
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Figure 6. Example video clips where the proposed FGFA method improves over the single-frame baseline (using ResNet-101). The

green and yellow boxes denote correct and incorrect detections, respectively. More examples are available at https://youtu.be/

R2h3DbTPvVg.

to 80.1%, showing that Seq-NMS is highly complementary

to FGFA.

Comparison with state-of-the-art systems Unlike im-

age object detection, the area of video object detection lacks

principled metrics [48] and guidelines for evaluation and

comparison. Existing leading entries in ImageNet VID

challenge 2015 and 2016 show impressive results, but they

are complex and highly engineered systems with various

bells and whistles. This makes direct and fair comparison

between different works difficult.

This work aims at a principled learning framework for

video object detection instead of the best system. The solid

improvement of FGFA over a strong single frame base-

line verifies the effectiveness of our approach. As a ref-

erence, the winning entry of ImageNet VID challenge 2016

(NUIST Team) [45] obtains 81.2% mAP on ImageNet VID

validation. It uses various techniques like model ensem-

bling, cascaded detection, context information, and multi-

scale inference. In contrast, our approach does not use these

techniques (only Seq-NMS is used) and achieves best mAP

at 80.1%. Thus, we conclude that our approach is highly

competitive with even the currently best engineered system.

5. Conclusion and Future Work

This work presents an accurate, end-to-end and princi-

pled learning framework for video object detection. Be-

cause our approach focuses on improving feature quality,

it would be complementary to existing box-level frame-

work for better accuracy in video frames. Several impor-

tant aspects are left for further exploration. Our method

slows down a bit, and it would be possibly sped up by more

lightweight flow networks. There is still large room to be

improved in fast object motion. More annotation data (e.g.,

YouTube-BoundingBoxes [29]) and precise flow estimation

may be benefit to improvements. Our method can further

leverage better adaptive memory scheme in the aggregation

instead of the attention model used. We believe these open

questions will inspire more future work.
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