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Abstract. We present a method for detecting objects in images using a single
deep neural network. Our approach, named SSD, discretizes the output space of
bounding boxes into a set of default boxes over different aspect ratios and scales
per feature map location. At prediction time, the network generates scores for the
presence of each object category in each default box and produces adjustments to
the box to better match the object shape. Additionally, the network combines pre-
dictions from multiple feature maps with different resolutions to naturally handle
objects of various sizes. Our SSD model is simple relative to methods that require
object proposals because it completely eliminates proposal generation and sub-
sequent pixel or feature resampling stage and encapsulates all computation in a
single network. This makes SSD easy to train and straightforward to integrate into
systems that require a detection component. Experimental results on the PASCAL
VOC, MS COCO, and ILSVRC datasets confirm that SSD has comparable accu-
racy to methods that utilize an additional object proposal step and is much faster,
while providing a unified framework for both training and inference. Compared
to other single stage methods, SSD has much better accuracy, even with a smaller
input image size. For 300 × 300 input, SSD achieves 72.1% mAP on VOC2007
test at 58 FPS on a Nvidia Titan X and for 500×500 input, SSD achieves 75.1%
mAP, outperforming a comparable state of the art Faster R-CNN model. Code is
available at https://github.com/weiliu89/caffe/tree/ssd .
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1 Introduction

Current state-of-the-art object detection systems are variants of the following approach:
hypothesize bounding boxes, resample pixels or features for each box, and apply a high-
quality classifier. This pipeline has prevailed on detection benchmarks since the Selec-
tive Search work [1] through the current leading results on PASCAL VOC, MS COCO,
and ILSVRC detection all based on Faster R-CNN[2] albeit with deeper features such
as [3]. Although accurate, these approaches have been too computationally intensive
for embedded systems and, even with high-end hardware, too slow for real-time or near
real-time applications. Often detection speed for these approaches is measured in sec-
onds per frame, and even the fastest high-accuracy detector, the basic Faster R-CNN,
operates at only 7 frames per second (FPS). There have been a wide range of attempts to
build faster detectors by attacking each stage of the detection pipeline (see related work
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2 Liu et al.

in Sec. 4), but so far, significantly increased speed comes only at the cost of significantly
decreased detection accuracy.

This paper presents the first deep network based object detector that does not re-
sample pixels or features for bounding box hypotheses and is as accurate as approaches
that do. This results in a significant improvement in speed for high-accuracy detection
(58 FPS with mAP 72.1% on VOC2007 test, vs Faster R-CNN 7 FPS with mAP
73.2% or YOLO 45 FPS with mAP 63.4%). The fundamental improvement in speed
comes from eliminating bounding box proposals and the subsequent pixel or feature
resampling stage. This is not the first paper to do this (cf [4,5]) but by adding a series
of improvements, we manage to increase the accuracy significantly over previous at-
tempts. Our improvements include using a small convolutional filter to predict object
categories and offsets in bounding box locations, using separate predictors (filters) for
different aspect ratio detections, and applying these filters to multiple feature maps from
the later stages of a network in order to perform detection at multiple scales. With these
modifications we can achieve high-accuracy detection using relatively low resolution
input, further increasing processing speed. While these contributions may seem small
independently, we note that the resulting system improves accuracy on high-speed de-
tection for PASCAL VOC from 63.4% mAP for YOLO to 72.1% mAP for our proposed
network. This is a larger relative improvement in detection accuracy than that from the
recent, very high-profile work on residual networks [3]. Furthermore, significantly im-
proving the speed of high-quality detection can broaden the range of settings where
computer vision is useful.

We summarize our contributions as follows:

– We introduce SSD, a single-shot detector for multiple categories that is faster than
the previous state of the art for single shot detectors (YOLO), and significantly
more accurate, in fact as accurate as slower techniques that perform explicit region
proposals and pooling (including Faster R-CNN).

– The core of the SSD approach is predicting category scores and box offsets for
a fixed set of default bounding boxes using small convolutional filters applied to
feature maps.

– In order to achieve high detection accuracy we produce predictions of different
scales from feature maps of different scales, and explicitly separate predictions by
aspect ratio.

– Together, these design features lead to simple end-to-end training and high accu-
racy, even with relatively low resolution input images, further improving the speed
vs accuracy trade-off.

– Experiments include timing and accuracy analysis on models with varying input
size evaluated on PASCAL VOC, MS COCO, and ILSVRC and are compared to a
range of recent state-of-the-art approaches.

2 The Single Shot Detector (SSD)

This section describes our proposed SSD framework for detection (Sec. 2.1) and the
associated training methodology (Sec. 2.2). Afterwards, Sec. 3 presents dataset-specific
model details and experimental results.
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SSD: Single Shot MultiBox Detector 3

(a) Image with GT boxes (b) 8 × 8 feature map (c) 4 × 4 feature map

loc : ∆(cx, cy, w, h)
conf : (c1, c2, · · · , cp)

Fig. 1: SSD framework. (a) SSD only needs an input image and ground truth boxes for
each object during training. In a convolutional fashion, we evaluate a small set (e.g. 4)
of default boxes of different aspect ratios at each location in several feature maps with
different scales (e.g. 8 × 8 and 4 × 4 in (b) and (c)). For each default box, we predict
both the shape offsets and the confidences for all object categories ((c1, c2, · · · , cp)).
At training time, we first match these default boxes to the ground truth boxes. For
example, we have matched two default boxes with the cat and one with the dog, which
are treated as positives and the rest as negatives. The model loss is a weighted sum
between localization loss (e.g. Smooth L1 [6]) and confidence loss (e.g. Softmax).

2.1 Model

The SSD approach is based on a feed-forward convolutional network that produces
a fixed-size collection of bounding boxes and scores for the presence of object class
instances in those boxes, followed by a non-maximum suppression step to produce the
final detections. The early network layers are based on a standard architecture used for
high quality image classification (truncated before any classification layers), which we
will call the base network1. We then add auxiliary structure to the network to produce
detections with the following key features:

Multi-scale feature maps for detection We add convolutional feature layers to the end
of the truncated base network. These layers decrease in size progressively and allow
predictions of detections at multiple scales. The convolutional model for predicting
detections is different for each feature layer (cf Overfeat[4] and YOLO[5] that operate
on a single scale feature map).

Convolutional predictors for detection Each added feature layer (or optionally an ex-
isting feature layer from the base network) can produce a fixed set of detection predic-
tions using a set of convolutional filters. These are indicated on top of the SSD network
architecture in Fig. 2. For a feature layer of size m × n with p channels, the basic el-
ement for predicting parameters of a potential detection is a 3 × 3 × p small kernel
that produces either a score for a category, or a shape offset relative to the default box

1 In our reported experiments we use the VGG-16 network as a base, but other networks should
also produce good results.
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4 Liu et al.

Fig. 2: A comparison between two single shot detection models: SSD and YOLO [5].
Our SSD model adds several feature layers to the end of a base network, which predict
the offsets to default boxes of different scales and aspect ratios and their associated
confidences. SSD with a 300 × 300 input size significantly outperforms its 448 × 448
YOLO counterpart in accuracy on VOC2007 test while also improving the run-time
speed, albeit YOLO customized network is faster than VGG16.

coordinates. At each of the m× n locations where the kernel is applied, it produces an
output value. The bounding box offset output values are measured relative to a default
box position relative to each feature map location (cf the architecture of YOLO[5] that
uses an intermediate fully connected layer instead of a convolutional filter for this step).
Default boxes and aspect ratios We associate a set of default bounding boxes with
each feature map cell, for multiple feature maps at the top of the network. The default
boxes tile the feature map in a convolutional manner, so that the position of each box
instance relative to its corresponding cell is fixed. At each feature map cell, we predict
the offsets relative to the default box shapes in the cell, as well as the per-class scores
that indicate the presence of a class instance in each of those boxes. Specifically, for
each box out of k at a given location, we compute c class scores and the 4 offsets
relative to the original default box shape. This results in a total of (c + 4)k filters that
are applied around each location in the feature map, yielding (c + 4)kmn outputs for
a m × n feature map. For an illustration of default boxes, please refer to Fig. 1. Our
default boxes are similar to the anchor boxes used in Faster R-CNN [2], however we
apply them to several feature maps of different resolutions. Allowing different default
box shapes in several feature maps lets us efficiently discretize the space of possible
output box shapes.

2.2 Training

The key difference between training SSD and training a typical detector that uses region
proposals and pooling before a final classifier, is that ground truth information needs

painterdrown Zheng


painterdrown Zheng




SSD: Single Shot MultiBox Detector 5

to be assigned to specific outputs in the fixed set of detector outputs. Some version
of this is also required for training in YOLO[5] and for the region proposal stages
of Faster R-CNN[2] and MultiBox[7]. Once this assignment is determined, the loss
function and back propagation are applied end-to-end. Training also involves choosing
the set of default boxes and scales for detection as well as hard negative mining and
data augmentation strategies.

Matching strategy At training time we need to establish the correspondence between
the ground truth and the default boxes. Note that for each ground truth box we are
selecting from default boxes that vary over location, aspect ratio, and scale. We begin
by matching each ground truth box to the default box with the best jaccard overlap.
This is the matching approach used by the original MultiBox [7] and it ensures that
each ground truth box has exactly one matched default box. Unlike MultiBox, we then
match default boxes to any ground truth with jaccard overlap higher than a threshold
(0.5). Adding these matches simplifies the learning problem: it allows the network to
predict high confidences for multiple overlapping default boxes rather than requiring it
to pick only the one with maximum overlap.

Training objective The SSD training objective is derived from the MultiBox objec-
tive [7,8] but is extended to handle multiple object categories. Let’s denote xpij = 1 to
indicate that the i-th default box is matched to the j-th ground truth box of category p,
and xpij = 0 otherwise. According to the matching strategy described above, we have∑

i x
p
ij ≥ 1, meaning there can be more than one default box matched to the j-th ground

truth box. The overall objective loss function is a weighted sum of the localization loss
(loc) and the confidence loss (conf):

L(x, c, l, g) =
1

N
(Lconf (x, c) + αLloc(x, l, g)) (1)

where N is the number of matched default boxes, and the localization loss is the Smooth
L1 loss [6] between the predicted box (l) and the ground truth box (g) parameters.
Similar to Faster R-CNN [2], we regress to offsets for the center of the bounding box
and for its width and height. Our confidence loss is the softmax loss over multiple
classes confidences (c) and the weight term α is set to 1 by cross validation.

Choosing scales and aspect ratios for default boxes Most convolutional networks
reduce the size of feature maps at the deeper layers. Not only does this reduce com-
putation and memory cost but it also provides some degree of translation and scale
invariance. To handle different object scales, some methods [4,9] suggest converting
the image to different sizes, then processing each size individually and combining the
results afterwards. However, by utilizing feature maps from several different layers in a
single network for prediction we can mimic the same effect, while also sharing parame-
ters across all object scales. Previous works [10,11] have shown that using feature maps
from the lower layers can improve semantic segmentation quality because the lower
layers capture more fine details of the input objects. Similarly, [12] showed that adding
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6 Liu et al.

global context pooled from the topmost feature map can help smooth the segmentation
results. Motivated by these methods, we use both the lower and upper feature maps for
making detection predictions. Figure 1 shows two exemplar feature maps (8 × 8 and
4 × 4) which are used in the framework, of course in practice we can use many more
with relatively small computational overhead.

Feature maps from different levels within a network are known to have different
(empirical) receptive field sizes [13]. Fortunately, within the SSD framework, the de-
fault boxes do not necessary need to correspond to the actual receptive fields of each
layer. We can design the tiling so that specific feature map locations learn to be respon-
sive to specific areas of the image and particular scales of the objects. Suppose we want
to use m feature maps to do the predictions. The scale of the default boxes for each
feature map is computed as:

sk = smin +
smax − smin

m− 1
(k − 1), k ∈ [1,m] (2)

where smin is 0.2 and smax is 0.95, meaning the lowest layer has a scale of 0.2 and
the highest layer has a scale of 0.95, and all layers in between are regularly spaced.
We impose different aspect ratios for the default boxes, and denote them as ar ∈
{1, 2, 3, 12 , 13}. We can compute the width (wa

k = sk
√
ar) and height (hak = sk/

√
ar)

for each default box. For the aspect ratio of 1, we also add a default box whose scale is
s′k =

√
sksk+1, resulting in 6 default boxes per feature map location. We set the center

of each default box to ( i+0.5
|fk| ,

j+0.5
|fk| ), where |fk| is the size of the k-th square feature

map, i, j ∈ [0, |fk|), and we truncate the coordinates of the default boxes such that they
are always within [0, 1]. In practice, one can also design a distribution of default boxes
to best fit a specific dataset.

By combining predictions for all default boxes with different scales and aspect ratios
from all locations of many feature maps, we have a diverse set of predictions, covering
various input object sizes and shapes. For example, in Fig. 1, the dog is matched to a
default box in the 4 × 4 feature map, but not to any default boxes in the 8 × 8 feature
map. This is because those boxes have different scales and do not match the dog box,
and therefore are considered as negatives during training.

Hard negative mining After the matching step, most of the default boxes are nega-
tives, especially when the number of possible default boxes is large. This introduces a
significant imbalance between the positive and negative training examples. Instead of
using all the negative examples, we sort them using the highest confidence for each de-
fault box and pick the top ones so that the ratio between the negatives and positives is
at most 3:1. We found that this leads to faster optimization and a more stable training.

Data augmentation To make the model more robust to various input object sizes and
shapes, each training image is randomly sampled by one of the following options:

– Use the entire original input image.
– Sample a patch so that the minimum jaccard overlap with the objects is 0.1, 0.3,

0.5, 0.7, or 0.9.
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SSD: Single Shot MultiBox Detector 7

– Randomly sample a patch.

The size of each sampled patch is [0.1, 1] of the original image size, and the aspect ratio
is between 1

2 and 2. We keep the overlapped part of the ground truth box if the center of
it is in the sampled patch. After the aforementioned sampling step, each sampled patch
is resized to fixed size and is horizontally flipped with probability of 0.5.

3 Experimental Results

Base network Our experiments are all based on VGG16 [14], which is pre-trained on
the ILSVRC CLS-LOC dataset [15]. Similar to DeepLab-LargeFOV [16], we convert
fc6 and fc7 to convolutional layers, subsample parameters from fc6 and fc7, change
pool5 from 2 × 2 − s2 to 3 × 3 − s1, and use the atrous algorithm to fill the ”holes”.
We remove all the dropout layers and the fc8 layer. We fine-tune the resulting model
using SGD with initial learning rate 10−3, 0.9 momentum, 0.0005 weight decay, and
batch size 32. The learning rate decay policy is slightly different for each dataset, and
we will describe details later. The full training and testing code is built on Caffe [17]
and is open source at https://github.com/weiliu89/caffe/tree/ssd.

3.1 PASCAL VOC2007

On this dataset, we compare against Fast R-CNN [6] and Faster R-CNN [2]. All meth-
ods use the same training data and pre-trained VGG16 network. Specifically, we train on
VOC2007 trainval and VOC2012 trainval (16551 images) and test on VOC2007
test (4952 images).

Figure 2 shows the architecture details of the SSD300 model. We use conv4 3,
conv7 (fc7), conv8 2, conv9 2, conv10 2, and pool11 to predict both location and con-
fidences2. We initialize the parameters for all the newly added convolutional layers with
the ”xavier” method [18]. Since the size of conv4 3 is big (38 × 38), we only place 3
default boxes on it – a box with scale 0.1 and two other boxes with aspect ratios of 1

2 and
2. For all other layers, we put 6 default boxes on them as described in Sec. 2.2. Since, as
pointed out in [12], conv4 3 has a different feature scale compared to the other layers,
we use the L2 normalization technique introduced in [12] to scale the feature norm at
each location in the feature map to 20 and learn the scale during back propagation. We
use the 10−3 learning rate for 40k iterations, then we decay it to 10−4 and continue
training for another 20k iterations. Table 1 shows that our SSD300 model is already
more accurate than Fast R-CNN. When we train SSD on a larger 500×500 input image
it is even more accurate, surpassing Faster R-CNN by 1.9% mAP.

To understand the performance of our two SSD models in more details, we used the
detection analysis tool from [19]. Figure 3 shows that SSD can detect various object
categories with high quality (large white area). The majority of its confident detections
are correct. The recall is around 85-90%, and is much higher with ”weak” (0.1 jaccard
overlap) criteria. Compared to R-CNN [20], SSD has less localization error, indicating
that SSD can localize objects better because it directly learns to regress the object shape

2 For SSD500 model, we add extra conv11 2 for prediction
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8 Liu et al.

Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Fast [6] 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4
Faster [2] 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6
SSD300 72.1 75.2 79.8 70.5 62.5 41.3 81.1 80.8 86.4 51.5 74.3 72.3 83.5 84.6 80.6 74.5 46.0 71.4 73.8 83.0 69.1
SSD500 75.1 79.8 79.5 74.5 63.4 51.9 84.9 85.6 87.2 56.6 80.1 70.0 85.4 84.9 80.9 78.2 49.0 78.4 72.4 84.6 75.5

Table 1: PASCAL VOC2007 test detection results. Both Fast and Faster R-CNN
use input images whose minimum dimension is 600. The two SSD models have exactly
the same settings except that they have different input sizes (300× 300 vs. 500× 500).
It is obvious that larger input size leads to better results.

and classify object categories instead of using two decoupled steps. However, SSD has
more confusions with similar object categories (especially for animals), partly because
we share locations for multiple categories.

Figure 4 shows that SSD is very sensitive to the bounding box size. In other words,
it has much worse performance on smaller objects than bigger objects. This is not sur-
prising because those small objects may not even have any information at the very top
layers. Increasing the input size (e.g. from 300 × 300 to 500 × 500) can help improve
detecting small objects, but there is still a lot of room to improve. On the positive side,
we can clearly see that SSD performs really well on large objects. And it is very robust
to different object aspect ratios because we use default boxes of various aspect ratios
per feature map location.

3.2 Model analysis

To understand SSD better, we have also carried out several controlled experiments to
examine how each component affects the final performance. For all of the following
experiments, we use exactly the same settings and input size (300×300), except for the
variable component.

SSD300
more data augmentation? 4 4 4 4 4

use conv4 3? 4 4 4 4 4

include { 1
2
, 2} box? 4 4 4 4 4

include { 1
3
, 3} box? 4 4 4 4

use atrous? 4 4 4 4 4

VOC2007 test mAP 65.4 68.1 69.2 71.2 71.4 72.1
Table 2: Effects of various design choices and components on SSD performance.

Data augmentation is crucial Fast and Faster R-CNN use the original image and the
horizontal flip (with probability 0.5) to train. We use a more extensive sampling strategy,
similar to YOLO [5], which also uses photometric distortions which we did not use.
Table 2 shows that we can improve 6.7% mAP with this sampling strategy. We do not
know how much our sampling strategy will benefit Fast and Faster R-CNN, but they are
likely to benefit less because they use a feature pooling step during classification that is
relatively robust to object translation by design.
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Fig. 3: Visualization of performance for SSD 500 on animals, vehicles, and furni-
ture from VOC2007 test. The top row shows the cumulative fraction of detections
that are correct (Cor) or false positive due to poor localization (Loc), confusion with
similar categories (Sim), with others (Oth), or with background (BG). The solid red
line reflects the change of recall with ”strong” criteria (0.5 jaccard overlap) as the num-
ber of detections increases. The dashed red line is using the ”weak” criteria (0.1 jaccard
overlap). The bottom row shows the distribution of top-ranked false positive types.
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Fig. 4: Sensitivity and impact of different object characteristics on VOC2007 test
set. Each plot shows the normalized AP [19] with standard error bars (red). Black
dashed lines indicate overall normalized AP. The plot on the left shows the effects of
BBox Area per category, and the right plot shows the effect of Aspect Ratio. Key: BBox
Area: XS=extra-small; S=small; M=medium; L=large; XL =extra-large. Aspect Ratio:
XT=extra-tall/narrow; T=tall; M=medium; W=wide; XW =extra-wide.



10 Liu et al.

More feature maps is better Inspired by many works in semantic segmentation [10,11,12],
we also use lower level feature maps for predicting bounding box outputs. We compare
a model utilizing conv4 3 for prediction and a model without it. From Table 2, we can
see that by adding conv4 3 for prediction, it has clearly better results (72.1% vs. 68.1%).
This also matches our intuition that conv4 3 can capture better the fine-grained details
of the objects, especially the small ones.

More default box shapes is better As described in Sec. 2.2, by default we use 6
default boxes per location. If we remove the boxes with 1

3 and 3 aspect ratios, the
performance drops by 0.9%. By further removing the boxes with 1

2 and 2 aspect ratios,
the performance drops another 2%. Using a variety of default box shapes seems to make
the task of predicting boxes easier for the network.

Atrous is better and faster As described in Sec. 3, we used the atrous version of
VGG16, following DeepLab-LargeFOV [16]. If we use the full VGG16, keeping pool5
with 2× 2− s2 and not subsampling parameters from fc6 and fc7, and add conv5 3 for
prediction, the result is slightly worse (0.7%) while the speed is about 50% slower.

3.3 PASCAL VOC2012

We use the same settings as those used for VOC2007. This time, we use VOC2012
trainval and VOC2007 trainval and test (21503 images) for training, and
test on VOC2012 test (10991 images). Since there is more training data, we train the
model with 10−3 learning for 60k iterations and then decay it to 10−4 and continue
training for another 20k iterations.

Table 3 shows the results of our SSD300 and SSD5003 model. We see the same
performance trend as we observed on VOC2007 test. Our SSD300 is already better than
Fast R-CNN and very close to Faster R-CNN (only 0.1% difference). By increasing the
training and testing image size to 500 × 500, we are 2.7% higher than Faster R-CNN.
Compared to YOLO, SSD is significantly better, likely due to the use of convolutional
default boxes from multiple feature maps and our matching strategy during training.

Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Fast [6] 68.4 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2
Faster [2] 70.4 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5
YOLO [5] 57.9 77.0 67.2 57.7 38.3 22.7 68.3 55.9 81.4 36.2 60.8 48.5 77.2 72.3 71.3 63.5 28.9 52.2 54.8 73.9 50.8
SSD300 70.3 84.2 76.3 69.6 53.2 40.8 78.5 73.6 88.0 50.5 73.5 61.7 85.8 80.6 81.2 77.5 44.3 73.2 66.7 81.1 65.8
SSD500 73.1 84.9 82.6 74.4 55.8 50.0 80.3 78.9 88.8 53.7 76.8 59.4 87.6 83.7 82.6 81.4 47.2 75.5 65.6 84.3 68.1

Table 3: PASCAL VOC2012 test detection results. Fast and Faster R-CNN use
images with minimum dimension 600, while the image size for YOLO is 448× 448.

3
http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?cls=mean&challengeid=11&compid=4

http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?cls=mean&challengeid=11&compid=4
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3.4 MS COCO

To further validate the SSD framework, we trained our SSD300 and SSD500 archi-
tectures on the MS COCO dataset. Since objects in COCO tend to be smaller, we use
smaller default boxes for all layers. We follow the strategy mentioned in Sec. 2.2, but
now our smallest default box has a scale of 0.1 instead of 0.2, and the scale of the default
box on conv4 3 is 0.07 (e.g. corresponding to 21 pixels for a 300× 300 image).

We use the trainval35k [21] to train our model. Since COCO has more object
categories, the gradient is not stable in the beginning. We first train the model with
8 × 10−4 learning rate for 4k iterations, followed by 10−3 learning rate for 140k iter-
ations, and then continue training for 60k iterations with 10−4 and 40k iterations with
10−5. Table 4 shows the results on test-dev2015. Similar to what we observed on
the PASCAL VOC dataset, SSD300 is better than Fast R-CNN in both mAP@0.5 and
mAP@[0.5:0.95]. SSD300 has a similar mAP@[0.5:0.95] to Faster R-CNN. However,
the mAP@0.5 is worse and we conjecture that it is because the image size is too small,
which prevents the model to localize many small objects accurately. By increasing the
image size to 500 × 500, our SSD500 is better than Faster R-CNN in both criteria. In
addition, our SSD500 model is also better than ION [21], a multi-scale version of Fast
R-CNN with explicit modeling of context using a recurrent network. In Fig. 5, we show
some detection examples on MS COCO test-dev with the SSD500 model.

Method data
Average Precision

0.5 0.75 0.5:0.95
Fast R-CNN [6] train 35.9 - 19.7
Faster R-CNN [2] train 42.1 - 21.5
Faster R-CNN [2] trainval 42.7 - 21.9
ION [21] train 42.0 23.0 23.0
SSD300 trainval35k 38.0 20.5 20.8
SSD500 trainval35k 43.7 24.7 24.4

Table 4: MS COCO test-dev2015 detection results.

3.5 Preliminary ILSVRC results

We applied the same network architecture we used for MS COCO to the ILSVRC DET
dataset [15]. We train a SSD300 model using the ILSVRC2014 DET train and val1
as used in [20]. We first train the model with 8 × 10−4 learning rate for 4k iterations,
and train it with 10−3 learning rate for 320k iterations, and then continue training for
100k iterations with 10−4 and 60k iterations with 10−5. We can achieve 41.1 mAP on
the val2 set [20]. Again, it validates that SSD is a general framework for high quality
real-time detection.

3.6 Inference time

Considering the large number of boxes generated from our method, it is essential to
perform non-maximum suppression (nms) efficiently during inference. By using a con-
fidence threshold of 0.01, we can filter out most boxes. We then use the Thrust CUDA
library for sorting, use a GPU implementation to compute overlap between all pairs of
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the remaining boxes, and then apply nms with jaccard overlap of 0.45 per class and keep
top 200 detections per image. This step costs about 2.2 msec per image for SSD300 for
20 VOC classes, which is close to the total time spent on all newly added layers.

Table 5 shows the comparison between SSD, Faster R-CNN[2], and YOLO[5].
Faster R-CNN uses extra prediction layers for region proposals and requires feature
resampling. In contrast, our SSD500 method outperforms Faster R-CNN in both speed
and accuracy. It is worth mentioning that our method SSD300 is the only real-time
method to achieve above 70% mAP. Although Fast YOLO[5] can run at 155 FPS, this
verion has much lower accuracy by almost 20% mAP.

Method mAP FPS # Boxes
Faster R-CNN [2](VGG16) 73.2 7 300
Faster R-CNN [2](ZF) 62.1 17 300
YOLO [5] 63.4 45 98
Fast YOLO [5] 52.7 155 98
SSD300 72.1 58 7308
SSD500 75.1 23 20097

Table 5: Results on Pascal VOC2007 test. SSD300 is the only real-time detection
method that can achieve above 70% mAP. By using a larger input image, SSD500 out-
performs all methods on accuracy while maintaining a close to real-time speed. The
speed of SSD models is measured with batch size of 8.

4 Related Work

There are two established classes of methods for object detection in images, one based
on sliding windows and the other based on region proposal classification. Before the
advent of convolutional neural networks, the state of the art for those two approaches
– Deformable Part Model (DPM) [22] and Selective Search [1] – had comparable
performance. However, after the dramatic improvement brought on by R-CNN [20],
which combines selective search region proposals and convolutional network based
post-classification, region proposal object detection methods became prevalent.

The original R-CNN approach has been improved in a variety of ways. The first
set of approaches improve the quality and speed of post-classification, since it requires
the classification of thousands of image crops, which is expensive and time-consuming.
SPPnet [9] speeds up the original R-CNN approach significantly. It introduces a spatial
pyramid pooling layer that is more robust to region size and scale and allows the classi-
fication layers to reuse features computed over feature maps generated at several image
resolutions. Fast R-CNN [6] extends SPPnet so that it can fine-tune all layers end-to-
end by minimizing a loss for both confidences and bounding box regression, which was
first introduced in MultiBox [7] for learning objectness.

The second set of approaches improve the quality of proposal generation using deep
neural networks. In the most recent works like MultiBox [7,8], the Selective Search
region proposals, which are based on low-level image features, are replaced by pro-
posals generated directly from a separate deep neural network. This further improves
the detection accuracy but results in a somewhat complex setup, requiring the training
of two neural networks with a dependency between them. Faster R-CNN [2] replaces
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selective search proposals by ones learned from a region proposal network (RPN), and
introduces a method to integrate the RPN with Fast R-CNN by alternating between fine-
tuning shared convolutional layers and prediction layers for these two networks. This
way region proposals are used to pool mid-level features and the final classification
step is less expensive. Our SSD is very similar to the region proposal network (RPN) in
Faster R-CNN in that we also use a fixed set of (default) boxes for prediction, similar
to the achor boxes in the RPN. But instead of using these to pool features and evaluate
another classifier, we simultaneously produce a score for each object category in each
box. Thus, our approach avoids the complication of merging RPN with Fast R-CNN
and is easier to train, faster, and straightforward to integrate in other tasks.

Another set of methods, which are directly related to our approach, skip the proposal
step altogether and predict bounding boxes and confidences for multiple categories di-
rectly. OverFeat [4], a deep version of the sliding window method, predicts a bounding
box directly from each location of the topmost feature map after knowing the confi-
dences of the underlying object categories. YOLO [5] uses the whole topmost feature
map to predict both confidences for multiple categories and bounding boxes (which
are shared for these categories). Our SSD method falls in this category because we do
not have the proposal step but use the default boxes. However, our approach is more
flexible than the existing methods because we can use default boxes of different aspect
ratios on each feature location from multiple feature maps at different scales. If we only
use one default box per location from the topmost feature map, our SSD would have
similar architecture to OverFeat [4]; if we use the whole topmost feature map and add a
fully connected layer for predictions instead of our convolutional predictors, and do not
explicitly consider multiple aspect ratios, we can approximately reproduce YOLO [5].

5 Conclusions

This paper introduces SSD, a fast single-shot object detector for multiple categories. A
key feature of our model is the use of multi-scale convolutional bounding box outputs
attached to multiple feature maps at the top of the network. This representation allows
us to efficiently model the space of possible box shapes. We experimentally validate
that given appropriate training strategies, a larger number of carefully chosen default
bounding boxes results in improved performance. We build SSD models with at least
an order of magnitude more box predictions sampling location, scale, and aspect ratio,
than the existing methods [2,5,7].

We demonstrate that given the same VGG-16 base architecture, SSD compares fa-
vorably to its state-of-the-art object detector counterparts in terms of both accuracy
and speed. Our SSD500 model significantly outperforms the state-of-the-art Faster R-
CNN [2] in terms of accuracy on PASCAL VOC and MS COCO, while being 3x faster.
Our real time SSD300 model runs at 58 FPS, which is faster than the current real time
YOLO [5] alternative, while producing markedly superior detection quality.

Apart from its standalone utility, we believe that our monolithic and relatively sim-
ple SSD model provides a great building block for larger systems that employ an object
detection component. A promising future direction is to explore its use as part of a
system using recurrent neural networks to detect and track objects in video.
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Fig. 5: Detection examples on MS COCO test-dev with SSD500 model. We show
detections with scores higher than 0.6. Each color corresponds to an object category.
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