
Towards High Performance
Video Object Detection for Mobiles

Xizhou Zhu? Jifeng Dai Xingchi Zhu? Yichen Wei Lu Yuan

Microsoft Research Asia
{v-xizzhu,jifdai,v-xizh14,luyuan,yichenw}@microsoft.com

Abstract Despite the recent success of video object detection on Desk-
top GPUs, its architecture is still far too heavy for mobiles. It is also
unclear whether the key principles of sparse feature propagation and
multi-frame feature aggregation apply at very limited computational re-
sources. In this paper, we present a light weight network architecture for
video object detection on mobiles. Light weight image object detector
is applied on sparse key frames. A very small network, Light Flow, is
designed for establishing correspondence across frames. A flow-guided
GRU module is designed to effectively aggregate features on key frames.
For non-key frames, sparse feature propagation is performed. The whole
network can be trained end-to-end. The proposed system achieves 60.2%
mAP score on ImageNet VID validation at speed of 25.6 fps on mobiles
(e.g., HuaWei Mate 8).

1 Introduction

Object detection has achieved significant progress in recent years using deep neu-
ral networks [1]. The general trend has been to make deeper and more compli-
cated object detection networks [2,3,4,5,6,7,8,9,10,11] in order to achieve higher
accuracy. However, these advances in improving accuracy are not necessarily
making networks more efficient with respect to size and speed. In many real
world applications, such as robotics, self-driving car, augmented reality, and
mobile phone, the object detection tasks need to be carried out in a real-time
fashion on a computationally limited platform.

Recently, there has been rising interest in building very small, low latency
models that can be easily matched to the design requirements for mobile and
embedded vision application, for example, SqueezeNet [12], MobileNet [13], and
ShuffleNet [14]. These structures are general, but not specifically designed for
object detection tasks. For this purpose, several small deep neural network archi-
tectures for object detection in static images are explored, such as YOLO [15],
YOLOv2 [11], Tiny YOLO [16], Tiny SSD [17]. However, directly applying these
detectors to videos faces new challenges. First, applying the deep networks on
all video frames introduces unaffordable computational cost. Second, recogni-
tion accuracy suffers from deteriorated appearances in videos that are seldom
observed in still images, such as motion blur, video defocus, rare poses, etc.
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Figure 1. Speed-accuracy trade-off for different lightweight object detectors. Curves
are drawn with varying image resolutions. Inference time is evaluated with TensorFlow
Lite [18] on a single 2.3GHz Cortex-A72 processor of Huawei Mate 8.

To address these issues, the current best practice [19,20,21] exploits temporal
information for speedup and improvement on detection accuracy for videos. On
one hand, sparse feature propagation is used in [19,21] to save expensive feature
computation on most frames. Features on these frames are propagated from
sparse key frame cheaply. On the other hand, multi-frame feature aggregation is
performed in [20,21] to improve feature quality and detection accuracy.

Built on the two principles, the latest work [21] provides a good speed-
accuracy tradeoff on Desktop GPUs. Unfortunately, the architecture is not friendly
for mobiles. For example, flow estimation, as the key and common component
in feature propagation and aggregation [19,20,21], is still far from the demand
of real-time computation on mobiles. Aggregation with long-term dependency is
also restricted by limited runtime memory of mobiles.

This paper describes a light weight network architecture for mobile video
object detection. It is primarily built on the two principles – propagating fea-
tures on majority non-key frames while computing and aggregating features on
sparse key frames. However, we need to carefully redesign both structures for
mobiles by considering speed, size and accuracy. On all frames, we present Light
Flow, a very small deep neural network to estimate feature flow, which offers
instant availability on mobiles. On sparse key frame, we present flow-guided
Gated Recurrent Unit (GRU) based feature aggregation, an effective aggregation
on a memory-limited platform. Additionally, we also exploit a light image object
detector for computing features on key frame, which leverage advanced and ef-
ficient techniques, such as depthwise separable convolution [22] and Light-Head
R-CNN [23].

The proposed techniques are unified to an end-to-end learning system. Com-
prehensive experiments show that the model steadily pushes forward the per-
formance (speed-accuracy trade-off) envelope, towards high performance video
object detection on mobiles. For example, we achieve 60.2% mAP score on Ima-
geNet VID validation at speed of 25.6 frame per second on mobiles (e.g., HuaWei
Mate 8). It is one order faster than the best previous effort on fast object detec-
tion, with on par accuracy (see Figure 1). To the best of our knowledge, for the
first time, we achieve realtime video object detection on mobile with reasonably
good accuracy.
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2 Revisiting Video Object Detection Baseline

Object detection in static images has achieved significant progress in recent
years using deep CNN [1]. State-of-the-art detectors share the similar network
architecture, consisting of two conceptual steps. First step is feature network,
which extracts a set of convolutional feature maps F over the input image I via
a fully convolutional backbone network [24,25,26,27,28,29,30,13,14], denoted as
Nfeat(I) = F . Second step is detection network, which generates detection result
y upon the feature maps F , by performing region classification and bounding
box regression over either sparse object proposals [2,3,4,5,6,7,8,9] or dense sliding
windows [10,15,11,31], via a multi-branched sub-network, namely Ndet(F ) = y.
It is randomly initialized and jointly trained with Nfeat.

Directly applying these detectors to video object detection faces challenges
from two aspects. For speed, applying single image detectors on all video frames
is not efficient, since the backbone network Nfeat is usually deep and slow.
For accuracy, detection accuracy suffers from deteriorated appearances in videos
that are seldom observed in still images, such as motion blur, video defocus, rare
poses.

Current best practice [19,20,21] exploits temporal information via sparse fea-
ture propagation and multi-frame feature aggregation to address the speed and
accuracy issues, respectively.

Sparse Feature Propagation Since contents would be very related between
consecutive frames, the exhaustive feature extraction is not very necessary to
be computed on most frames. Deep feature flow [19] provides an efficient way,
which computes expensive feature network at only sparse key frames (e.g., every
10th) and propagates key frame feature maps to majority non-key frames, which
results 5× speedup with minor drop in accuracy.

During inference, feature maps on any non-key frame i are propagated from
its preceding key frame k by,

Fk→i =W(Fk,Mi→k), (1)

where Fk = Nfeat(Ik) is the feature of key frame k, and W represents the
differentiable bilinear warping function. The two dimensional motion field Mi→k

between two frames Ii and Ik is estimated through a flow networkNflow(Ik, Ii) =
Mi→k, which is much cheaper than Nfeat.

Multi-frame Feature Aggregation To improve detection accuracy, flow-
guided feature aggregation (FGFA) [20] aggregates feature maps from nearby
frames, which are aligned well through the estimated flow.

The aggregated feature maps F̂i at frame i is obtained as a weighted average
of nearby frames feature maps,

F̂i =
∑

k∈[i−r,i+r]

Wk→i � Fk→i, (2)
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where � denotes element-wise multiplication, and the weight Wk→i is adaptively
computed as the similarity between the propagated feature maps Fk→i and the
feature map Fi at frame i.

To avoid dense aggregation on all frames, [21] suggested sparsely recursive
feature aggregation, which operates only on sparse key frames. Such a way retain
the feature quality from aggregation but reduce the computational cost as well.
Specifically, given two succeeding key frames k and k′, the aggregated feature at
frame k′ is computed by,

F̂k′ = Wk→k′ � F̂k→k′ +Wk′→k′ � Fk′ . (3)

2.1 Practice for Mobiles

As the two principles, sparse feature propagation and multi-frame feature aggre-
gation, yield the best practice towards high performance (speed and accuracy
trade-off) video object detection [21] on Desktop GPUs. Instead, there are very
limited computational capability and runtime memory on mobiles. Therefore,
what are principles for mobiles should be explored.

– Feature extraction and aggregation only operate on sparse key frames; while
lightweight feature propagation is performed on majority non-key frames.

– Flow estimation is the key to feature propagation and aggregation. However,
flow networks Nflow used in [19,20,21] are still far from the demand of real-
time processing on mobiles. Specifically, FlowNet [32] is 11.8× FLOPs of
MobileNet [13] under the same input resolutions. Even the smallest FlowNet
Inception used in [19] is 1.6× more FLOPs. A more cheaper Nflow is so
necessary.

– Feature aggregation should be operated on aligned feature maps according
to flow. Otherwise, displacements caused by large object motion would cause
severe errors to aggregation. Long-term dependency in aggregation is also
favoured because more temporal information can be fused together for better
feature quality.

– The backbone network of single image detector should be as small as possible,
since we need it to compute features on sparse key frame.

3 Model Architecture for Mobiles

Based on the above principles, we design a much smaller network architecture
for mobile video object detection. Inference pipeline is illustrated in Figure 2.

Given a key frame k′ and its proceeding key frame k, feature maps are first
extracted by Fk′ = Nfeat(Ik′), and then aggregated with its proceeding key

frame aggregated feature maps F̂k by,

F̂k′ = G(Fk′ , F̂k,Mk′→k), (4)

where G is a flow-guided feature aggregation function. The detection network
Ndet is applied on F̂k′ to get detection predictions for the key frame k′.
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Figure 2. Illustration of video object detection for mobile by the proposed method.

Given a non-key frame i, the feature propagation from key frame k to frame
i is denoted as,

F̂k→i =W(F̂k,Mi→k), (5)

where F̂k is the aggregated feature maps of key frame k, and W represents the
differentiable bilinear warping function also used in [19]. And then the detection
network Ndet is applied on F̂k→i to get detection predictions for the non-key
frame i.

Next, we will describe two new techniques which are specially designed for
mobiles, including Light Flow, a more efficient flow network for mobiles, and a
flow-guided GRU based feature aggregation for better modeling long-term depen-
dency, yielding better quality and accuracy.

3.1 Light Flow

FlowNet [32] is originally proposed for pixel-level optical flow estimation. It is
designed in a encoder-decoder mode followed by multi-resolution optical flow
predictors. Two input RGB frames are concatenated to form a 6-channels in-
put. In encoder, the input is converted into a bundle of feature maps in spatial
dimensions to 1/64 of input size through a class of convolutional layers. In de-
coder, the feature maps are fed to multiple deconvolution layers to achieve the
high resolution flow prediction. After each deconvolution layer, the feature maps
are concatenated with the last feature maps in encoder, which share the same
spatial resolution and an upsampled coarse flow prediction. Multiple optical flow
predictors follow each concatenated feature maps in decoder. Loss functions are
applied to each predictor, but only the finest prediction is used during inference.

To speedup flow network Nflow greatly, we present Light Flow, a more light
weight flow network with several deliberate designs based on FlowNet [32]. It
only causes minor drop in accuracy (15% increasing in end-point error) but
significantly speeds up by nearly 65× theoretically (see Table. 2).
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In encoder part, convolution is always the bottleneck of computation. Moti-
vated by MobileNet [13], we replace all convolutions to 3×3 depthwise separable
convolutions [22] (each 3×3 depthwise convolution followed by a 1×1 pointwise
convolution). Compared with standard 3×3 convolution, the computation cost
of 3×3 depthwise separable convolution is reduced by 8 ∼ 9 times with a slight
drop in accuracy [13].

In decoder part, each deconvolution operation is replaced by a nearest-
neighbor upsampling followed by a depthwise separable convolution. [33] replaces
deconvolution with nearest-neighbor upsampling followed by a standard convolu-
tion to address checkerboard artifacts caused by deconvolution. By contrast, We
leverage this idea, and further replace the standard convolution with depthwise
separable convolution, to reduce computation cost.

Finally, we adopt a simple and effective way to consider multi-resolution
predictions. It is inspired by FCN [34] which fuses multi-resolution semantic
segmentation prediction as the final prediction in a explicit summation way.
Unlike [32], we do not use only the finest optical flow prediction as final prediction
during inference. Instead, multi-resolution predictions are up-sampled to the
same spatial resolution with the finest prediction, and then are averaged as the
final prediction. Also, during training, only a single loss function is applied on
the averaged optical flow prediction instead of multiple loss functions after each
prediction. Such a way can reduce end-point error by nearly 10%.

Architecture and Implementation Network of Light Flow is illustrated in
Table. 1. Each convolution operation is followed by batch normalization [35]
and Leaky ReLU nonlinearity [36] with slope fixed as 0.1. Following [32,37],
Light Flow is pre-trained on the Flying Chairs dataset. For training Light Flow,
Adam [38] with a weight decay of 0.00004 is used as optimization method. 70k
iterations are performed on 4 GPUs, with each GPU holding 64 image pairs.
A warm-up learning rate scheme is used in which we first train with a learning
rate of 0.001 for 10k iterations. Then we train with learning rate of 0.01 for 20k
iterations and divided it by 2 every 10k iterations.

When applying Light Flow for our method, to get further speedup, two mod-
ifications are made. First, following [19,20,21], Light Flow is applied on images
with half input resolution of the feature network, and has an output stride of
4. As the feature network has an output stride of 16, the flow field is downsam-
pled to match the resolution of the feature maps. Second, since Light Flow is
very small and has comparable computation with the detection network Ndet,
sparse feature propagation is applied on the intermediate feature maps of the
detection network (see Section 3.3, the 256-d feature maps in RPN [5], and the
490-d feature maps in Light-Head R-CNN [23]), to further reduce computations
for non-key frame.

3.2 Flow-guided GRU based Feature Aggregation

Previous works [20,21] have showed that feature aggregation plays an important
role on improving detection accuracy. It should be explored how to learn com-
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Name Filter Shape Stride Output size Input

Encoder

Images 512×384×6
Conv1 dw 3 × 3 × 6 dw 2 256×192×6 Images
Conv1 1 × 1 × 6 × 32 1 256×192×32 Conv1 dw
Conv2 dw 3 × 3 × 32 dw 2 128×96×32 Conv1
Conv2 1 × 1 × 32 × 64 1 128×96×64 Conv2 dw
Conv3 dw 3 × 3 × 64 dw 2 64×48×64 Conv2
Conv3 1 × 1 × 64 × 128 1 64×48×128 Conv3 dw
Conv4a dw 3 × 3 × 128 dw 2 32×24×128 Conv3
Conv4a 1 × 1 × 128 × 256 1 32×24×256 Conv4a dw
Conv4b dw 3 × 3 × 256 dw 1 32×24×256 Conv4a
Conv4b 1 × 1 × 256 × 256 1 32×24×256 Conv4b dw
Conv5a dw 3 × 3 × 256 dw 2 16×12×256 Conv4b
Conv5a 1 × 1 × 256 × 512 1 16×12×512 Conv5a dw
Conv5b dw 3 × 3 × 512 dw 1 16×12×512 Conv5a
Conv5b 1 × 1 × 512 × 512 1 16×12×512 Conv5b dw
Conv6a dw 3 × 3 × 512 dw 2 8×6×512 Conv5b
Conv6a 1 × 1 × 512 × 1024 1 8×6×1024 Conv6a dw
Conv6b dw 3 × 3 × 1024 dw 1 8×6×1024 Conv6a
Conv6b 1 × 1 × 1024 × 1024 1 8×6×1024 Conv6b dw

Decoder

Conv7 dw 3 × 3 × 1024 dw 1 8×6×1024 Conv6b
Conv7 1 × 1 × 1024 × 256 1 8×6×256 Conv7 dw
Conv8 dw 3 × 3 × 768 dw 1 16×12×768 [Conv7↑, Conv5b]
Conv8 1 × 1 × 768 × 128 1 16×12×128 Conv8 dw
Conv9 dw 3 × 3 × 384 dw 1 32×24×384 [Conv8↑, Conv4b]
Conv9 1 × 1 × 384 × 64 1 32×24×64 Conv9 dw
Conv10 dw 3 × 3 × 192 dw 1 64×48×192 [Conv9↑, Conv3]
Conv10 1 × 1 × 192 × 32 1 64×48×32 Conv10 dw
Conv11 dw 3 × 3 × 96 dw 1 128×96×96 [Conv10↑, Conv2]
Conv11 1 × 1 × 96 × 16 1 128×96×16 Conv11 dw

Optical Flow Predictors

Conv12 dw 3 × 3 × 256 dw 1 8×6×256 Conv7
Conv12 1 × 1 × 256 × 2 1 8×6×2 Conv12 dw
Conv13 dw 3 × 3 × 128 dw 1 16×12×128 Conv8
Conv13 1 × 1 × 128 × 2 1 16×12×2 Conv13 dw
Conv14 dw 3 × 3 × 64 dw 1 32×24×64 Conv9
Conv14 1 × 1 × 64 × 2 1 32×24×2 Conv14 dw
Conv15 dw 3 × 3 × 32 dw 1 64×48×32 Conv10
Conv15 1 × 1 × 32 × 2 1 64×48×2 Conv15 dw
Conv16 dw 3 × 3 × 16 dw 1 128×96×16 Conv11
Conv16 1 × 1 × 16 × 2 1 128×96×2 Conv16 dw

Multiple Optical Flow Predictions Fusion

Average 128×96×2
Conv12↑↑↑↑ + Conv13↑↑↑ +
Conv14↑↑ + Conv15↑ + Conv16

Table 1. The details of the Light Flow architecture, ’dw’ in filter shape denotes a
depthwise separable convolution, ↑ is a 2× nearest neighbor upsampling, [·,·] is the
concatenation operation.
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plex and long-term temporal dynamics for a wide variety of sequence learning
and prediction tasks. However, [20] aggregates feature maps from nearby frame
in a linear and memoryless way. Obviously, it only models short-term depen-
dencies. Though recursive aggregation [21] has proven successful on fusing more
past frames, it can be difficult to train it to learn long-term dynamics, likely
due in part to the vanishing and exploding gradients problem that can result
from propagating the gradients down through the many layers of the recurrent
network.

Recently, [39] has showed that Gated Recurrent Unit (GRU) [40] is more
powerful in modeling long-term dependencies than LSTM [41] and RNN [42],
because nonlinearities are incorporated into the network state updates. Inspired
by this work, we incorporate convolutional GRU proposed by [43] into flow-
guided feature aggregation function G instead of simply weighted average used
in [20,21]. The aggregation function G in Eq. (4) is computed by,

F̂k′ = G(Fk′ , F̂k,Mk′→k)

= (1− zt)� F̂k→k′ + zt � φ(Wh ? Fk′ + Uh ? (rt � F̂k→k′) + bh),

zt = σ(Wz ? Fk′ + Uz ? F̂k→k′ + bz) is the update gate,

rt = σ(Wr ? Fk′ + Ur ? F̂k→k′ + br) is the reset gate,

(6)

where F̂k→k′ = W(F̂k,Mk′→k), W·, U·, b· are parameter tensors and vectors, �
denotes elementwise multiplication, ? denotes 3 × 3 convolution, σ is sigmoid
function and φ is ReLU function.

Compared with the original GRU [40], there are three key differences. First,
3× 3 convolution is used instead of fully connected matrix multiplication, since
fully connected matrix multiplication is too costly when GRU is applied to image
feature maps. Second, φ is ReLU function instead of hyperbolic tangent function
(tanh) for faster and better convergence. Third, we apply GRU only on sparse
key frames (e.g., every 10th) instead of consecutive frames. Since two successive
inputs for GRU would be apart 10 frames (1/3 second for a video with 30 fps),
object displacements should be taken into account, and thus features should be
aligned for GRU aggregation. By contrast, previous works [44,45,46,43] based on
either convolutional LSTM or convolutional GRU do not consider such a design-
ing since they operate on consecutive frames instead, where object displacement
would be small and neglected.

3.3 Lightweight Key-frame Object Detector

For key frame, we need a lightweight single image object detector, which consists
of a feature network and a detection network. For the feature network, we adopt
the state-of-the-art lightweight MobileNet [13] as the backbone network, which
is designed for mobile recognition tasks. The MobileNet module is pre-trained
on ImageNet classification task [47]. For the detection network, RPN [5] and the
recently presented Light-Head R-CNN [23] are adopted, because of their light
weight. Detailed implementation is illustrated below.

painterdrown Zheng


painterdrown Zheng


painterdrown Zheng


painterdrown Zheng


painterdrown Zheng




Towards High Performance Video Object Detection for Mobiles 9

Feature Network We remove the ending average pooling and the fully-connected
layer of MobileNet [13], and retain the convolutional layers. Since our input im-
age resolution is very small (e.g., 224×400), we increase feature resolution to
get higher performance. First, a 3×3 convolution is applied on top to reduce the
feature dimension to 128, and then a nearest-neighbor upsampling is utilized to
increase feature stride from 32 to 16. To give more detailed information, a 1×1
convolution with 128 filters is applied to the last feature maps with feature stride
16, and then added to the upsampled 128-d feature maps.

Detection Network RPN [5] and Light-Head R-CNN [23] are applied on the
shared 128-d feature maps. In our model, to reduce computation of RPN, 256-d
intermediate feature maps was utilized, which is half of originally used in [5].
Three aspect ratios {1:2, 1:1, 2:1} and four scales {322, 642, 1282, 2562} for RPN
are set to cover objects with different shapes. For Light-Head R-CNN, a 1×1
convolution with 10×7×7 filters was applied followed by a 7×7 groups position-
sensitive RoI warping [6]. Then, two sibling fully connected layers are applied
on the warped feature to predict RoI classification and regression.

3.4 End-to-end Training

All the modules in the entire architecture, including Nfeat, Ndet and Nflow, can
be jointly trained for video object detection task. In SGD, n + 1 nearby video
frames, Ii, Ik, Ik−l, Ik−2l, ..., Ik−(n−1)l, 0 ≤ i − k < l, are randomly sampled,
where key frame duration l = 10 and key frame samples n = 8 are set for our
experiments. In the forward pass, Ik−(n−1)l is assumed as a key frame, and the
inference pipeline is exactly performed. Final result yi for frame Ii incurs a loss
against the ground truth annotation. All operations are differentiable and thus
can be end-to-end trained.

4 Experiments

Experiments are performed on ImageNet VID [47], a large-scale benchmark for
video object detection. Following the practice in [48,49], model training and eval-
uation are performed on the 3,862 training video snippets and the 555 validation
video snippets, respectively. The snippets are at frame rates of 25 or 30 fps in
general. 30 object categories are involved, which are a subset of ImageNet DET
annotated categories.

In training, following [48,49], both the ImageNet VID training set and the
ImageNet DET training set are utilized. In each mini-batch of SGD, either n+1
nearby video frames from ImageNet VID, or a single image from ImageNet DET,
are sampled at 1:1 ratio. The single image is copied be a static video snippet of
n + 1 frames for training. In SGD, 240k iterations are performed on 4 GPUs,
with each GPU holding one mini-batch. The learning rates are 10−3, 10−4 and
10−5 in the first 120k, the middle 60k and the last 60k iterations, respectively.
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By default, the key-frame object detector is MobileNet+Light-Head R-CNN,
and flow is estimated by Light Flow. The key frame duration length is every
10 frames. In both training and inference, the images are resized to a shorter
side of 224 pixels and 112 pixels, for the image recognition network and the flow
network, respectively. Inference time is evaluated with TensorFlow Lite [18] on a
single 2.3GHz Cortex-A72 processor of Huawei Mate 8. Theoretical computation
is counted in FLOPs (floating point operations, note that a multiply-add is
counted as 2 operations).

Following the practice in MobileNet [13], two width multipliers, α and β,
are introduced for controlling the computational complexity, by adjusting the
network width. For each layer (except the final prediction layers) in Nfeat, Ndet

and Nflow, its output channel number is multiplied by α, α and β, respectively.
The resulting network parameter number and theoretical computation change
quadratically with the width multiplier. We experiment with α ∈ {1.0, 0.75, 0.5}
and β ∈ {1.0, 0.75, 0.5}. By default, α and β are set as 1.0.

4.1 Ablation Study

Ablation on flow networks The middle panel of Table 2 compares the pro-
posed Light Flow with existing flow estimation networks on the Flying Chairs
test set (384 x 512 input resolution). Following the protocol in [32], the accuracy
is evaluated by the average end-point error (EPE). Compared with the origi-
nal FlowNet design in [32], Light Flow (β = 1.0) can achieve 65.2× theoretical
speedup with 14.9× less parameters. The flow estimation accuracy drop is small
(15% relative increase in EPE). It is worth noting that it achieves higher ac-
curacy than FlowNet Half and FlowNet Inception utilized in [19], with at least
one order less computation overhead. The speed of Light Flow can be further
fastened with reduced network width, at certain cost of flow estimation accuracy.
Flow estimation would not be a bottleneck in our mobile video object detection
system.

Would such a light-weight flow network effectively guide feature propagation?
To answer this question, we experiment with integrating different flow networks
into our mobile video object detection system. The key-frame object detector is
MobileNet+Light-Head R-CNN.

The rightmost panel of Table 2 presents the results. The detection system
utilizing Light Flow achieves accuracy very close to that utilizing the heavy-
weight FlowNet (61.2% v.s. 61.5%), and is one order faster. Actually, the orig-
inal FlowNet is so heavy that the detection system with FlowNet is even 2.7×
slower than simply applying the MobileNet+Light-Head R-CNN detector on
each frame.

Ablation on feature aggregation How important is to exploit flow to align
features across frames? To answer this question, we experiment with a degener-
ated version of our method, where no flow-guided feature propagation is applied
before aggregating features across key frames.
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flow network
Flying Chairs test ImageNet VID validation

EPE params (M) FLOPs (B) mAP params (M) FLOPs (B)

FlowNet [32] 2.71 38.7 53.48 61.5 45.1 6.41

FlowNet Half [19] 3.53 9.7 14.50 - - -

FlowNet Inception [19] 3.68 3.5 7.28 - - -

FlowNet 2.0 [37] 1.71 162.5 269.39 - - -

1.0 Light Flow 3.14 2.6 0.82 61.2 9.0 0.41

0.75 Light Flow 3.63 1.4 0.48 60.6 7.8 0.37

0.5 Light Flow 4.44 0.7 0.23 60.1 7.1 0.34

Table 2. Ablation of different flow networks for optical flow prediction on Flying Chairs
and for video object detection on ImageNet VID.
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Figure 3. Ablation on the effect of flow guidance in flow-guided GRU and in sparse
feature propagation.

Figure 3 shows the speed-accuracy curves of our method with and without
flow guidance. The curve is drawn by adjusting the key frame duration l. We
can see that the curve with flow guidance surpasses that without flow guidance.
The performance gap is more obvious when the key frame duration increases
(1.5% mAP score gap at l = 10, 2.9% mAP score gap at l = 20). This is because
the spatial disparity is more obvious when the key frame duration is long. It is
worth noting that the accuracy further drops if no flow is applied even for sparse
feature propagation on the non-key frames.

Table 3 presents the results of training and inference on frame sequences of
varying lengths. We tried training on sequences of 2, 4, 8, 16, and 32 frames. The
trained network is either applied on trimmed sequences of the same length as in
training, or on the untrimmed video sequences without specific length restriction.
The experiment suggests that it is beneficial to train on long sequences, but the
gain saturates at length 8. Inference on the untrimmed video sequences leads
to accuracy on par with that of trimmed, and can be implemented easier. By
default, we train on sequences of length 8, and apply the trained network on
untrimmed sequences.

Table 4 further compares the proposed flow-guided GRU method with the
feature aggregation approach in [21]. An mAP score of 58.4% is achieved by
the aggregation approach in [21], which is comparable with the single frame
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train sequence length 2 4 8 16 32

inference trimmed, mAP (%) 59.5 61.0 61.5 61.6 61.5

inference untrimmed, mAP (%) 56.4 60.6 61.2 61.4 61.5

Table 3. Ablation of sequence length in training and inference.

aggregation method mAP (%) params (M) FLOPs (B)

single frame baseline 58.3 5.6 2.39

feature aggregation in [21] 58.4 8.3 0.37

GRU (128-d, default) 61.2 9.0 0.41

GRU (256-d) 62.4 13.0 0.64

GRU (tanh for φ) 57.3 9.0 0.41

GRU (stacking 2 layers) 61.4 9.9 0.47

GRU (stacking 3 layers) 60.6 10.8 0.53

Table 4. Ablation on feature aggregation.

baseline at 6.5× theoretical speedup. But it is still 2.8% shy in mAP of utilizing
flow-guided GRU, at close computational overhead.

We further studied several design choices in flow-guided GRU. φ function with
ReLU nonlinearity leads to 3.9% higher mAP score compared to tanh nonlinear-
ity. The ReLU nonlinearity seems to converge faster than tanh in our network. If
computation allows, it would be more efficient to increase the accuracy by mak-
ing the flow-guided GRU module wider (1.2% mAP score increase by enlarging
channel width from 128-d to 256-d), other than by stacking multiple layers of
the flow-guided GRU module (accuracy drops when stacking 2 or 3 layers).

Accurate Realtime Video Object Detection on Mobile Figure 4 presents
the speed-accuracy trade-off curve of our method, drawn with varying key frame
duration length l from 1 to 20. Multiple curves are presented, which correspond
to networks of different complexity (α × β ∈ {1.0, 0.75, 0.5} × {1.0, 0.75, 0.5}).
When l = 1, the image recognition network is densely applied on each frame, as
in the single frame baseline. The difference is flow-guided GRU is applied. The
derived accuracy by such dense feature aggregation is noticeably higher than
that of the single frame baseline. With increased key frame duration length, the
accuracy drops gracefully as the computation overhead relieves. The accuracy
of our method at long duration length (l = 20) is still on par with that of the
single frame baseline, and is 10.6× more computationally efficient. The above
observation holds for the curves of networks of different complexity.

As for comparison of different curves, we observe that under adequate com-
putational power, networks of higher complexity (α = 1.0) would lead to bet-
ter speed-accuracy tradeoff. On the other hand, networks of lower complexity
(α = 0.5) would perform better under limited computational power.

At our mobile test platform, the proposed system achieves an accuracy of
60.2% at speed of 25.6 frames per second (α = 1.0, β = 0.5, l = 10). The
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Figure 4. Speed-accuracy trade-off curves of our method utilizing networks of different
computational complexity. Curves are drawn with different key frame duration length
l ∈ {1, 2, 3, ..., 20}.

method mAP (%) Params (M) FLOPs (B) runtime (fps)

Single frame baseline (α = 1.0) 58.3 5.6 2.39 4.0

Single frame baseline (α = 0.75) 53.1 3.4 1.36 7.6

Single frame baseline (α = 0.5) 48.6 1.7 0.62 16.4

Our method (α = 1.0, β = 1.0) 61.2 9.0 0.41 12.5

Our method (α = 1.0, β = 0.75) 60.8 7.8 0.37 18.2

Our method (α = 1.0, β = 0.5) 60.2 7.1 0.34 25.6

Our method (α = 0.75, β = 0.75) 56.4 5.3 0.23 26.3

Our method (α = 0.75, β = 0.5) 56.0 4.6 0.20 37.0

Our method (α = 0.5, β = 0.5) 51.2 2.6 0.11 52.6

Table 5. Speed-accuracy performance of our method.

accuracy is 51.2% at a frame rate of 50Hz (α = 0.5, β = 0.5, l = 10). Table 5
summarizes the results.

5 In Context of Previous Work on Mobile

There are also some other endeavors trying to make object detection efficient
enough for devices with limited computational power. They can be mainly clas-
sified into two major branches: lightweight image object detectors making the
per-frame object detector fast, and mobile video object detectors exploiting tem-
poral information.

5.1 Lightweight Image Object Detector

In spite of the work towards more accurate object detection by exploiting deeper
and more complex networks, there are also efforts designing lightweight im-
age object detectors for practical applications. Of them, the improvements of
YOLO [15], SSD [10], together with the lastest Light-head R-CNN [23] are of
the best speed-accuracy trade-off.

YOLO [15] and SSD [10] are one-stage object detectors, where the detection
result is directly produced by the network in a sliding window fashion. YOLO
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frames object detection as a regression problem, and a light-weight detection
head directly predicts bounding boxes on the whole image. In YOLO and its
improvements, like YOLOv2 [11] and Tiny YOLO [16], specifically designed
feature extraction networks are utilized for computational efficiency. For SSD,
the output space of bounding boxes are discretized into a set of anchor boxes,
which are classified by a light-weight detection head. In its improvements, like
SSDLite [50] and Tiny SSD [17], more efficient feature extraction networks are
also utilized.

Light-head R-CNN [23] is of two-stage, where the object detector is applied
on a small set of region proposals. In previous two-stage detectors, either the
detection head or its previous layer, is of heavy-weight. In Light-head R-CNN,
position-sensitive feature maps [6] are exploited to relief the burden. It shows
better speed-accuracy performance than the single-stage detectors.

Lightweight image object detector is an indispensable component for our
video object detection system. On top of it, our system can further significantly
improve the speed-accuracy trade-off curve. Here we choose to integrate Light-
head R-CNN into our system, thanks to its outstanding performance. Other
lightweight image object detectors should be generally applicable within our
system.

5.2 Mobile Video Object Detector

Despite the practical importance of video object detection on devices with lim-
ited computational power, there is scarce literature. Till very recently, there
are two latest works seeking to exploit temporal information for addressing this
problem.

In Fast YOLO [51], a modified YOLOv2 [11] detector is applied on sparse
key frames, and the detected bounding boxes are directly copied to the the non-
key frames, as their detection results. Although sparse key frames are exploited
for acceleration, no feature aggregation or flow-guided warping is applied. No
end-to-end training for video object detection is performed. Without all these
important components, its accuracy cannot compete with ours. But direct com-
parison is difficult, because the paper does not report any accuracy numbers on
any datasets for their method, with no public code.

In [44], MobileNet SSDLite [50] is applied densely on all the video frames,
and multiple Bottleneck-LSTM layers are applied on the derived image feature
maps to aggregate information from multiple frames. It cannot speedup upon the
single-frame baseline without sparse key frames. Extending it to exploit sparse
key frame features would be non-trival. It would involve feature alignment, which
is also lacking in [44]. Its performance also cannot be easily compared with ours.
It reports accuracy on a subset of ImageNet VID, where the split is not publicly
known. Its code is also not public.

Both two systems cannot compete with the proposed system. They both do
not align features across frames. Besides, [51] does not aggregate features from
multiple frames for improving accuracy, while [44] does not exploit sparse key
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frames for acceleration. Such design choices are vital towards high performance
video object detection.

5.3 Comparison on ImageNet VID

Of all the systems discussed in Section 5.1 and Section 5.2, SSDLite [50], Tiny
YOLO [16], and YOLOv2 [11] are the most related systems that can be compared
at proper effort. They all seek to improve the speed-accuracy trade-off by opti-
mizing the image object detection network. Although they do not report results
on ImageNet VID [47], they all public their code fortunately. We first carefully
reproduced their results in paper (on PASCAL VOC [52] and COCO [53]), and
then trained models on ImageNet VID, also by utilizing ImageNet VID and Im-
ageNet DET train sets. The trained models are applied on each video frame for
video object detection. By varying the input image frame size (shorter side in
{448, 416, 384, 352, 320, 288, 256, 224} for SSDLite and Tiny YOLO, and {320,
288, 256, 224, 192, 160, 128} for YOLO v2), we can draw their speed-accuracy
trade-off curves. The technical report of Fast YOLO [51] is also very related.
But it neither reports accuracy nor has public code. We cannot compare with it.
Note that the comparison is at the detection system level. We do not dive into
the details of varying technical designs.

Figure 1 presents the the speed-accuracy curves of different systems on Ima-
geNet VID validation. For our system, the curve is drawn also by adjusting the
image size1(shorter side for image object detection network in {320, 288, 256,
224, 208, 192, 176, 160}), for fair comparison. The width multipliers α and β
are set as 1.0 and 0.5 respectively, and the key frame duration length l is set as
10. Our system surpasses all the existing systems by clear margin. Our method
achieves an accuracy of 60.2% at 25.6 fps. Meanwhile, YOLOv2, SSDLite and
Tiny YOLO obtain accuracies of 58.7%, 57.1%, and 44.1% at frame rates of 0.3,
3.8 and 2.2 fps respectively. To the best of our knowledge, for the first time, we
achieve realtime video object detection on mobile with reasonably good accuracy.

6 Discussion

In this paper, we propose a light weight network for video object detection on
mobile devices. We verified that the principals of sparse feature propagation
and multi-frame feature aggregation also hold at very limited computational
overhead. A very small flow network, Light Flow, is proposed. A flow-guided
GRU module is proposed for effective feature aggregation.

A possible issue with the current approach is that there would be short
latency in processing online streaming videos. Because the recognition on the
key frame is still not fast enough. It would be interesting to study this problem
in the future.

1 the input image resolution of the flow network is kept to be half of the resolution of
the image recognition network.
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40. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for
statistical machine translation. In: EMNLP. (2014) 8

41. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8) (1997) 1735–1780 8



18 Towards High Performance Video Object Detection for Mobiles

42. Elman, J.L.: Finding structure in time. Cognitive science 14(2) (1990) 179–211 8
43. Ballas, N., Yao, L., Pal, C., Courville, A.: Delving deeper into convolutional net-

works for learning video representations. In: ICLR. (2016) 8
44. Liu, M., Zhu, M.: Mobile video object detection with temporally-aware feature

maps. arXiv preprint arXiv:1711.06368 (2017) 8, 14
45. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.c.: Convo-

lutional lstm network: A machine learning approach for precipitation nowcasting.
In: Advances in neural information processing systems. (2015) 802–810 8

46. Li, Z., Gavves, E., Jain, M., Snoek, C.G.: Videolstm convolves, attends and flows
for action recognition. arXiv preprint arXiv:1607.01794 (2016) 8

47. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A., Li, F.F.: Imagenet large scale
visual recognition challenge. In: IJCV. (2015) 8, 9, 15

48. Kang, K., Li, H., Yan, J., Zeng, X., Yang, B., Xiao, T., Zhang, C., Wang, Z., Wang,
R., Wang, X., Ouyang, W.: T-cnn: Tubelets with convolutional neural networks
for object detection from videos. arXiv preprint arxiv:1604.02532 (2016) 9

49. Lee, B., Erdenee, E., Jin, S., Nam, M.Y., Jung, Y.G., Rhee, P.K.: Multi-class
multi-object tracking using changing point detection. In: ECCV. (2016) 9

50. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Inverted residuals
and linear bottlenecks: Mobile networks for classification, detection and segmenta-
tion. arXiv preprint arXiv:1801.04381 (2018) 14, 15

51. Shafiee, M.J., Chywl, B., Li, F., Wong, A.: Fast yolo: A fast you only look
once system for real-time embedded object detection in video. arXiv preprint
arXiv:1709.05943 (2017) 14, 15

52. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The
pascal visual object classes (voc) challenge. International journal of computer
vision 88(2) (2010) 303–338 15

53. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision, Springer (2014) 740–755 15


